IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v45y2016i2p187-196.html
   My bibliography  Save this article

Persistent and transient productive inefficiency: a maximum simulated likelihood approach

Author

Listed:
  • Massimo Filippini
  • William Greene

Abstract

The productive efficiency of a firm can be seen as composed of two parts, one persistent and one transient. The received empirical literature on the measurement of productive efficiency has paid relatively little attention to the difference between these two components. Ahn and Sickles (Econ Rev 19(4):461–492, 2000 ) suggested some approaches that pointed in this direction. The possibility was also raised in Greene (Health Econ 13(10):959–980, 2004 . doi: 10.1002/hec.938 ), who expressed some pessimism over the possibility of distinguishing the two empirically. Recently, Colombi (A skew normal stochastic frontier model for panel data, 2010 ) and Kumbhakar and Tsionas (J Appl Econ 29(1):110–132, 2012 ), in a milestone extension of the stochastic frontier methodology have proposed a tractable model based on panel data that promises to provide separate estimates of the two components of efficiency. The approach developed in the original presentation proved very cumbersome actually to implement in practice. Colombi ( 2010 ) notes that FIML estimation of the model is ‘complex and time consuming.’ In the sequence of papers, Colombi ( 2010 ), Colombi et al. (A stochastic frontier model with short-run and long-run inefficiency random effects, 2011 , J Prod Anal, 2014 ), Kumbhakar et al. (J Prod Anal 41(2):321–337, 2012 ) and Kumbhakar and Tsionas ( 2012 ) have suggested other strategies, including a four step least squares method. The main point of this paper is that full maximum likelihood estimation of the model is neither complex nor time consuming. The extreme complexity of the log likelihood noted in Colombi ( 2010 ), Colombi et al. ( 2011 , 2014 ) is reduced by using simulation and exploiting the Butler and Moffitt (Econometrica 50:761–764, 1982 ) formulation. In this paper, we develop a practical full information maximum simulated likelihood estimator for the model. The approach is very effective and strikingly simple to apply, and uses all of the sample distributional information to obtain the estimates. We also implement the panel data counterpart of the Jondrow et al. (J Econ 19(2–3):233–238, 1982 ) estimator for technical or cost inefficiency. The technique is applied in a study of the cost efficiency of Swiss railways. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
  • Handle: RePEc:kap:jproda:v:45:y:2016:i:2:p:187-196
    DOI: 10.1007/s11123-015-0446-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-015-0446-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-015-0446-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    2. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    3. Awudu Abdulai & Hendrik Tietje, 2007. "Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(3), pages 393-416, September.
    4. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2011. "A Stochastic Frontier Model with short-run and long-run inefficiency random effects," Working Papers 1101, Department of Management, Information and Production Engineering, University of Bergamo.
    5. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    6. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    7. William Greene, 2004. "Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization's panel data on national health care systems," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 959-980, October.
    8. Mehdi Farsi & Massimo Filippini & William Greene, 2005. "Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies," Journal of Regulatory Economics, Springer, vol. 28(1), pages 69-90, July.
    9. Cornes,Richard, 1992. "Duality and Modern Economics," Cambridge Books, Cambridge University Press, number 9780521336017, October.
    10. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
    11. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    12. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    13. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    14. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    15. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2005. "Unobserved heterogeneity in stochastic cost frontier models: an application to Swiss nursing homes," Applied Economics, Taylor & Francis Journals, vol. 37(18), pages 2127-2141.
    16. Seung Ahn & Robin Sickles, 2000. "Estimation of long-run inefficiency levels: a dynamic frontier approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 461-492.
    17. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    18. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    21. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    2. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    3. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    4. Farsi, Mehdi & Filippini, Massimo & Kuenzle, Michael, 2007. "Cost efficiency in the Swiss gas distribution sector," Energy Economics, Elsevier, vol. 29(1), pages 64-78, January.
    5. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.
    6. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    7. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    8. Mehdi Farsi & Massimo Filippini & William Greene, 2005. "Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies," Journal of Regulatory Economics, Springer, vol. 28(1), pages 69-90, July.
    9. Hailu, Kidanemariam Berhe & Tanaka, Makoto, 2015. "A “true” random effects stochastic frontier analysis for technical efficiency and heterogeneity: Evidence from manufacturing firms in Ethiopia," Economic Modelling, Elsevier, vol. 50(C), pages 179-192.
    10. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    11. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2006. "Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models," Journal of Transport Economics and Policy, University of Bath, vol. 40(1), pages 95-118, January.
    12. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    13. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    14. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    15. Anbes Tenaye, 2020. "Technical Efficiency of Smallholder Agriculture in Developing Countries: The Case of Ethiopia," Economies, MDPI, vol. 8(2), pages 1-27, April.
    16. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    17. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    18. Castiglione, Concetta & Infante, Davide & Zieba, Marta, 2023. "Public support for performing arts. Efficiency and productivity gains in eleven European countries," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    19. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    20. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.

    More about this item

    Keywords

    Productive efficiency; Stochastic frontier analysis; Panel data; Transient and persistent efficiency; C1; C23; D2; D24;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D2 - Microeconomics - - Production and Organizations
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:45:y:2016:i:2:p:187-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.