IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v10y2022i1p123-144n3.html
   My bibliography  Save this article

Dependence modeling in stochastic frontier analysis

Author

Listed:
  • Mamonov Mikhail E.

    (Institute for International Studies, MGIMO-University, Prospekt Vernadskogo 76, 119454 Moscow, Russia)

  • Parmeter Christopher F.

    (Department of Economics, University of Miami, 517-E Jenkins Building, Coral Gables, Florida, USA)

  • Prokhorov Artem B.

    (Discipline of Business Analytics, Business School, The University of Sydney, Room 4088, Abercrombie Building (H70), Australia)

Abstract

This review covers several of the core methodological and empirical developments surrounding stochastic frontier models that incorporate various new forms of dependence. Such models apply naturally to panels where cross-sectional observations on firm productivity correlate over time, but also in situations where various components of the error structure correlate between each other and with input variables. Ignoring such dependence patterns is known to lead to severe biases in the estimates of production functions and to incorrect inference.

Suggested Citation

  • Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
  • Handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:123-144:n:3
    DOI: 10.1515/demo-2022-0107
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2022-0107
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2022-0107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anil Bera & Subhash Sharma, 1999. "Estimating Production Uncertainty in Stochastic Frontier Production Function Models," Journal of Productivity Analysis, Springer, vol. 12(3), pages 187-210, November.
    2. Hansen, Christian & McDonald, James B. & Newey, Whitney K., 2010. "Instrumental Variables Estimation With Flexible Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 13-25.
    3. El Mehdi, Rachida & Hafner, Christian M., 2014. "Inference in stochastic frontier analysis with dependent error terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 104-116.
    4. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    5. Schmidt, Peter & Lovell, C. A. Knox, 1980. "Estimating stochastic production and cost frontiers when technical and allocative inefficiency are correlated," Journal of Econometrics, Elsevier, vol. 13(1), pages 83-100, May.
    6. Schmidt, Peter & Lin, Tsai-Fen, 1984. "Simple tests of alternative specifications in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 24(3), pages 349-361, March.
    7. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    8. Simar, Léopold & Wilson, Paul W., 2013. "Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives," Foundations and Trends(R) in Econometrics, now publishers, vol. 5(3–4), pages 183-337, June.
    9. Subal C. Kumbhakar & Almas Heshmati, 1995. "Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data, 1976–88," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(3), pages 660-674.
    10. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2021. "A new family of copulas, with application to estimation of a production frontier system," Journal of Productivity Analysis, Springer, vol. 55(1), pages 1-14, February.
    11. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    12. Badunenko, Oleg & Kumbhakar, Subal C., 2017. "Economies of scale, technical change and persistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter?," European Journal of Operational Research, Elsevier, vol. 260(2), pages 789-803.
    13. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    14. Nicholas Bloom & Renata Lemos & Raffaella Sadun & Daniela Scur & John Van Reenen, 2016. "International Data on Measuring Management Practices," American Economic Review, American Economic Association, vol. 106(5), pages 152-156, May.
    15. Waldman, Donald M., 1982. "A stationary point for the stochastic frontier likelihood," Journal of Econometrics, Elsevier, vol. 18(2), pages 275-279, February.
    16. Tran, Kien C. & Tsionas, Efthymios G., 2013. "GMM estimation of stochastic frontier model with endogenous regressors," Economics Letters, Elsevier, vol. 118(1), pages 233-236.
    17. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    18. Toru Hattori, 2002. "Relative Performance of U.S. and Japanese Electricity Distribution: An Application of Stochastic Frontier Analysis," Journal of Productivity Analysis, Springer, vol. 18(3), pages 269-284, November.
    19. Subal Kumbhakar & Efthymios Tsionas & Timo Sipiläinen, 2009. "Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming," Journal of Productivity Analysis, Springer, vol. 31(3), pages 151-161, June.
    20. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    21. Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
    22. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    23. Schmidt, Peter & Knox Lovell, C. A., 1979. "Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers," Journal of Econometrics, Elsevier, vol. 9(3), pages 343-366, February.
    24. Wang, Hung-Jen & Ho, Chia-Wen, 2010. "Estimating fixed-effect panel stochastic frontier models by model transformation," Journal of Econometrics, Elsevier, vol. 157(2), pages 286-296, August.
    25. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    26. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    27. Michael Koetter & James W. Kolari & Laura Spierdijk, 2012. "Enjoying the Quiet Life under Deregulation? Evidence from Adjusted Lerner Indices for U.S. Banks," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 462-480, May.
    28. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2014. "Using Copulas to Model Time Dependence in Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 497-522, August.
    29. Kutlu, Levent, 2010. "Battese-coelli estimator with endogenous regressors," Economics Letters, Elsevier, vol. 109(2), pages 79-81, November.
    30. William Greene, 2010. "A stochastic frontier model with correction for sample selection," Journal of Productivity Analysis, Springer, vol. 34(1), pages 15-24, August.
    31. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2017. "Endogenous environmental variables in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 199(2), pages 131-140.
    32. Boris E. Bravo-Ureta & Laszlo Rieger, 1991. "Dairy Farm Efficiency Measurement Using Stochastic Frontiers and Neoclassical Duality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(2), pages 421-428.
    33. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    34. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    35. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    36. Schmidt, Peter, 1976. "On the Statistical Estimation of Parametric Frontier Production Functions," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 238-239, May.
    37. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    38. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    39. Henry, Michael & Kneller, Richard & Milner, Chris, 2009. "Trade, technology transfer and national efficiency in developing countries," European Economic Review, Elsevier, vol. 53(2), pages 237-254, February.
    40. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514, September.
    41. Roland Bénabou & Jean Tirole, 2016. "Mindful Economics: The Production, Consumption, and Value of Beliefs," Journal of Economic Perspectives, American Economic Association, vol. 30(3), pages 141-164, Summer.
    42. Gudbrand Lien & Subal C. Kumbhakar & J. Brian Hardaker, 2017. "Accounting for risk in productivity analysis: an application to Norwegian dairy farming," Journal of Productivity Analysis, Springer, vol. 47(3), pages 247-257, June.
    43. Ryan Mutter & William Greene & William Spector & Michael Rosko & Dana Mukamel, 2013. "Investigating the impact of endogeneity on inefficiency estimates in the application of stochastic frontier analysis to nursing homes," Journal of Productivity Analysis, Springer, vol. 39(2), pages 101-110, April.
    44. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    45. Christine Amsler & Peter Schmidt, 2021. "A Survey of the Use of Copulas in Stochastic Frontier Models," Springer Proceedings in Business and Economics, in: Christopher F. Parmeter & Robin C. Sickles (ed.), Advances in Efficiency and Productivity Analysis, pages 125-138, Springer.
    46. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    47. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    48. Tran, Kien C. & Tsionas, Efthymios G., 2015. "Endogeneity in stochastic frontier models: Copula approach without external instruments," Economics Letters, Elsevier, vol. 133(C), pages 85-88.
    49. Laure Latruffe & Boris E. Bravo-Ureta & Alain Carpentier & Yann Desjeux & Víctor H. Moreira, 2017. "Subsidies and Technical Efficiency in Agriculture: Evidence from European Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 783-799.
    50. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    51. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolskiy, Ilya & Furmanov, Kirill, 2023. "Assessing the accuracy of efficiency rankings obtained from a stochastic frontier model," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 71, pages 128-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    2. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    3. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    4. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    5. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    6. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    7. Badunenko, Oleg & D’Inverno, Giovanna & De Witte, Kristof, 2023. "On distinguishing the direct causal effect of an intervention from its efficiency-enhancing effects," European Journal of Operational Research, Elsevier, vol. 310(1), pages 432-447.
    8. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    9. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    10. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    11. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    12. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    13. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    14. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    15. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.
    16. MAIMOUNA DIAKITE & Jean-François BRUN, 2016. "Tax Potential and Tax Effort: An Empirical Estimation for Non-Resource Tax Revenue and VAT’s Revenue," EcoMod2016 9537, EcoMod.
    17. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    18. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    19. Bernini, Cristina & Cerqua, Augusto & Pellegrini, Guido, 2017. "Public subsidies, TFP and efficiency: A tale of complex relationships," Research Policy, Elsevier, vol. 46(4), pages 751-767.
    20. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2020. "A spatial stochastic frontier model with endogenous frontier and environmental variables," European Journal of Operational Research, Elsevier, vol. 286(1), pages 389-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:123-144:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.