IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v133y2015icp85-88.html
   My bibliography  Save this article

Endogeneity in stochastic frontier models: Copula approach without external instruments

Author

Listed:
  • Tran, Kien C.
  • Tsionas, Efthymios G.

Abstract

This papers considers an alternative estimation procedures for estimating stochastic frontier models with endogenous regressors when no external instruments are available. The approach we propose is based on copula function to directly model the correlation between the endogenous regressors and the composed errors. Estimation of model parameters is done using maximum likelihood. Monte Carlo simulations are used to assess and compare the finite sample performances of the proposed estimation procedures.

Suggested Citation

  • Tran, Kien C. & Tsionas, Efthymios G., 2015. "Endogeneity in stochastic frontier models: Copula approach without external instruments," Economics Letters, Elsevier, vol. 133(C), pages 85-88.
  • Handle: RePEc:eee:ecolet:v:133:y:2015:i:c:p:85-88
    DOI: 10.1016/j.econlet.2015.05.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176515002219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2015.05.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    2. Tran, Kien C. & Tsionas, Efthymios G., 2013. "GMM estimation of stochastic frontier model with endogenous regressors," Economics Letters, Elsevier, vol. 118(1), pages 233-236.
    3. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    4. Kutlu, Levent, 2010. "Battese-coelli estimator with endogenous regressors," Economics Letters, Elsevier, vol. 109(2), pages 79-81, November.
    5. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    6. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    7. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    2. Robert Germeshausen & Timo Panke & Heike Wetzel, 2020. "Firm characteristics and the ability to exercise market power: empirical evidence from the iron ore market," Empirical Economics, Springer, vol. 58(5), pages 2223-2247, May.
    3. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    4. Artem Prokhorov & Kien C. Tran & Mike G. Tsionas, 2021. "Estimation of semi- and nonparametric stochastic frontier models with endogenous regressors," Empirical Economics, Springer, vol. 60(6), pages 3043-3068, June.
    5. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    6. Yang Yu & Edward C. Jaenicke, 2020. "Estimating Food Waste as Household Production Inefficiency," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 525-547, March.
    7. Mustafa U. Karakaplan & Levent Kutlu, 2019. "Estimating market power using a composed error model," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(4), pages 489-510, September.
    8. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.
    9. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2017. "Endogenous environmental variables in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 199(2), pages 131-140.
    10. Rouven E. Haschka & Helmut Herwartz, 2022. "Endogeneity in pharmaceutical knowledge generation: An instrument‐free copula approach for Poisson frontier models," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(4), pages 942-960, November.
    11. Levent Kutlu & Kien C. Tran & Mike G. Tsionas, 2020. "Unknown latent structure and inefficiency in panel stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 54(1), pages 75-86, August.
    12. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    13. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    14. N. Englezos & X. Kartala & P. Koundouri & M. Tsionas & A. Alamanos, 2023. "A Novel HydroEconomic - Econometric Approach for Integrated Transboundary Water Management Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 975-1030, April.
    15. Mustafa U. Karakaplan & Levent Kutlu, 2017. "Handling Endogeneity in Stochastic Frontier Analysis," Economics Bulletin, AccessEcon, vol. 37(2), pages 889-901.
    16. Tran, Kien C. & Tsionas, Mike G., 2016. "On the estimation of zero-inefficiency stochastic frontier models with endogenous regressors," Economics Letters, Elsevier, vol. 147(C), pages 19-22.
    17. Mike G. Tsionas, 2017. "“When, Where, and How” of Efficiency Estimation: Improved Procedures for Stochastic Frontier Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 948-965, July.
    18. Wondmagegn Tirkaso & Atakelty Hailu, 2022. "Does neighborhood matter? Spatial proximity and farmers’ technical efficiency," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 374-386, May.
    19. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    20. Kutlu, Levent & Nair-Reichert, Usha, 2022. "Executive compensation and the potential for additional efficiency gains: Evidence from the Indian manufacturing sector," Economic Modelling, Elsevier, vol. 114(C).

    More about this item

    Keywords

    Stochastic frontier model; Endogenous regressors; Copula function; Maximum likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:133:y:2015:i:c:p:85-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.