IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v24y2012i3p783-795.html
   My bibliography  Save this article

Binomial kernel and Bayes local bandwidth in discrete function estimation

Author

Listed:
  • N. Zougab
  • S. Adjabi
  • C. Kokonendji

Abstract

The Bayesian approach to bandwidth selection in discrete associated kernel estimation of probability mass function is a very good alternative to the classical popular methods such as the methods which adopt the asymptotic mean integrated squared error as a criterion and the cross-validation technique. In this paper, we propose a Bayesian local approach to bandwidth selection considering the binomial kernel estimator and locally treating the bandwidth h as a random quantity with a prior distribution. The local bandwidth is estimated by the posterior mean of h. The performance of this proposed approach and that of the classical methods are compared using simulations of data generated from known discrete functions. The new method is then applied to a real count data set. The smoothing quality of the Bayes estimator is very satisfactory.

Suggested Citation

  • N. Zougab & S. Adjabi & C. Kokonendji, 2012. "Binomial kernel and Bayes local bandwidth in discrete function estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 783-795.
  • Handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:783-795
    DOI: 10.1080/10485252.2012.678847
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.678847
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.678847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
    2. Kokonendji, Célestin C. & Varron, Davit, 2016. "Performance of discrete associated kernel estimators through the total variation distance," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 225-235.
    3. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
    4. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    5. Tristan Senga Kiessé & Nabil Zougab & Célestin C. Kokonendji, 2016. "Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data," Computational Statistics, Springer, vol. 31(1), pages 189-206, March.
    6. Ziane Yasmina & Zougab Nabil & Adjabi Smail, 2021. "Body tail adaptive kernel density estimation for nonnegative heavy-tailed data," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 57-69, March.
    7. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    8. Sobom M. Somé & Célestin C. Kokonendji & Nawel Belaid & Smail Adjabi & Rahma Abid, 2023. "Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 843-865, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:783-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.