IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i2d10.1007_s00180-021-01144-w.html
   My bibliography  Save this article

Consistent second-order discrete kernel smoothing using dispersed Conway–Maxwell–Poisson kernels

Author

Listed:
  • Alan Huang

    (University of Queensland)

  • Lucas Sippel

    (University of Queensland)

  • Thomas Fung

    (Macquarie University)

Abstract

The histogram estimator of a discrete probability mass function often exhibits undesirable properties related to zero probability estimation both within the observed range of counts and outside into the tails of the distribution. To circumvent this, we formulate a novel second-order discrete kernel smoother based on the recently developed mean-parametrized Conway–Maxwell–Poisson distribution which allows for both over- and under-dispersion. Two automated bandwidth selection approaches, one based on a simple minimization of the Kullback–Leibler divergence and another based on a more computationally demanding cross-validation criterion, are introduced. Both methods exhibit excellent small and large sample performance. Computational results on simulated datasets from a range of target distributions illustrate the flexibility and accuracy of the proposed method compared to existing smoothed and unsmoothed estimators. The method is applied to the modelling of somite counts in earthworms, and the number of development days of insect pests on the Hura tree.

Suggested Citation

  • Alan Huang & Lucas Sippel & Thomas Fung, 2022. "Consistent second-order discrete kernel smoothing using dispersed Conway–Maxwell–Poisson kernels," Computational Statistics, Springer, vol. 37(2), pages 551-563, April.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01144-w
    DOI: 10.1007/s00180-021-01144-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01144-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01144-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kokonendji, Célestin C. & Zocchi, Silvio S., 2010. "Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1655-1662, November.
    2. Lawrence Marsh & Kajal Mukhopadhyay, 1999. "Discrete Poisson kernel density estimation-with an application to wildcat coal strikes," Applied Economics Letters, Taylor & Francis Journals, vol. 6(6), pages 393-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doho, Libaud Rudy Aurelien & Somé, Sobom Matthieu & Banto, Jean Michel, 2023. "Inflation and west African sectoral stock price indices: An asymmetric kernel method analysis," Emerging Markets Review, Elsevier, vol. 54(C).
    2. Senga Kiessé, Tristan & Durrieu, Gilles, 2024. "On a discrete symmetric optimal associated kernel for estimating count data distributions," Statistics & Probability Letters, Elsevier, vol. 208(C).
    3. Sobom M. Somé & Célestin C. Kokonendji & Nawel Belaid & Smail Adjabi & Rahma Abid, 2023. "Bayesian local bandwidths in a flexible semiparametric kernel estimation for multivariate count data with diagnostics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 843-865, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Gottard & Maria Iannario & Domenico Piccolo, 2016. "Varying uncertainty in CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 225-244, June.
    2. Shaul K. Bar-Lev & Gérard Letac, 2023. "A note on the discretization of natural exponential families on the real line," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 83-90, January.
    3. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
    4. T. Senga Kiessé & M. Rivoire, 2011. "Discrete semiparametric regression models with associated kernel and applications," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 927-941.
    5. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    6. Senga Kiessé, Tristan & Ventura, Anne, 2016. "Discrete non-parametric kernel estimation for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 47-54.
    7. Kokonendji, Célestin C. & Varron, Davit, 2016. "Performance of discrete associated kernel estimators through the total variation distance," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 225-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:2:d:10.1007_s00180-021-01144-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.