IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i2d10.1007_s10260-022-00671-0.html
   My bibliography  Save this article

A new autoregressive process driven by explanatory variables and past observations: an application to PM 2.5

Author

Listed:
  • Zheqi Wang

    (Liaoning University
    Jilin University
    Dawning International Information Industry Co., Ltd.)

  • Dehui Wang

    (Liaoning University)

  • Jianhua Cheng

    (Jilin University)

Abstract

This paper uses the empirical likelihood (EL) method for a new random coefficient autoregressive process driven by explanatory variables and past observations through logistic structure (OD-RCAR (1)), which combines explanatory variables and past observations, and puts forward the penalized maximum empirical likelihood (PMEL) method for parameters estimation and variable selection. Firstly, limiting distributions of the estimating function and log empirical likelihood ratio statistics based on EL are established. Meanwhile, this paper sets up a confidence region and EL test for parameters. Secondly, the maximum empirical likelihood estimators and their asymptotic properties are obtained. At the same time, the penalized empirical likelihood ratio test statistic is given. Thirdly, it is proved in a high-dimensional setting that the PMEL in our model can solve the problem of order selection and parameter estimation. Finally, not only practical data applications but also numerical simulations are adopted in order to describe the performance of proposed methods.

Suggested Citation

  • Zheqi Wang & Dehui Wang & Jianhua Cheng, 2023. "A new autoregressive process driven by explanatory variables and past observations: an application to PM 2.5," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 619-658, June.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:2:d:10.1007_s10260-022-00671-0
    DOI: 10.1007/s10260-022-00671-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-022-00671-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-022-00671-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenlei Leng & Cheng Yong Tang, 2012. "Penalized empirical likelihood and growing dimensional general estimating equations," Biometrika, Biometrika Trust, vol. 99(3), pages 703-716.
    2. Hoderlein, Stefan & Klemelä, Jussi & Mammen, Enno, 2010. "Analyzing The Random Coefficient Model Nonparametrically," Econometric Theory, Cambridge University Press, vol. 26(3), pages 804-837, June.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Joakim Westerlund & Paresh Narayan, 2015. "A Random Coefficient Approach to the Predictability of Stock Returns in Panels," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 605-664.
    5. Raju Maiti & Atanu Biswas & Bibhas Chakraborty, 2018. "Modelling of low count heavy tailed time series data consisting large number of zeros and ones," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 407-435, August.
    6. Alexander Aue & Lajos Horváth & Josef Steinebach, 2006. "Estimation in Random Coefficient Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 61-76, January.
    7. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Horowitz, Joel L. & Nesheim, Lars, 2021. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," Journal of Econometrics, Elsevier, vol. 222(1), pages 44-55.
    10. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Bang-Qiang He & Xing-Jian Hong & Guo-Liang Fan, 2020. "Penalized empirical likelihood for partially linear errors-in-variables panel data models with fixed effects," Statistical Papers, Springer, vol. 61(6), pages 2351-2381, December.
    12. Stephan Martin, 2022. "Estimation of Conditional Random Coefficient Models using Machine Learning Techniques," Papers 2201.08366, arXiv.org.
    13. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    14. Zheng, Haitao & Basawa, Ishwar V., 2008. "First-order observation-driven integer-valued autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 1-9, January.
    15. Cheng Yong Tang & Chenlei Leng, 2010. "Penalized high-dimensional empirical likelihood," Biometrika, Biometrika Trust, vol. 97(4), pages 905-920.
    16. Paul D. Feigin & Richard L. Tweedie, 1985. "Random Coefficient Autoregressive Processes:A Markov Chain Analysis Of Stationarity And Finiteness Of Moments," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 1-14, January.
    17. István Berkes & Lajos Horváth & Shiqing Ling, 2009. "Estimation in nonstationary random coefficient autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 395-416, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    2. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    3. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    4. Fang, Jianglin, 2023. "A split-and-conquer variable selection approach for high-dimensional general semiparametric models with massive data," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    6. Geng, Shuli & Zhang, Lixin, 2024. "Decorrelated empirical likelihood for generalized linear models with high-dimensional longitudinal data," Statistics & Probability Letters, Elsevier, vol. 211(C).
    7. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    8. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    9. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    10. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Feng, Sanying & Lian, Heng & Zhu, Fukang, 2016. "Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 139-150.
    12. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    13. Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
    14. Abdelhakim Aknouche, 2015. "Quadratic random coefficient autoregression with linear-in-parameters volatility," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 99-125, July.
    15. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    16. Aknouche, Abdelhakim, 2015. "Unified quasi-maximum likelihood estimation theory for stable and unstable Markov bilinear processes," MPRA Paper 69572, University Library of Munich, Germany.
    17. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    18. Mahdieh Bayati & Seyed Kamran Ghoreishi & Jingjing Wu, 2021. "Bayesian analysis of restricted penalized empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1321-1339, June.
    19. Trapani, Lorenzo, 2021. "A test for strict stationarity in a random coefficient autoregressive model of order 1," Statistics & Probability Letters, Elsevier, vol. 177(C).
    20. Ying Sheng & Yifei Sun & Chiung‐Yu Huang & Mi‐Ok Kim, 2022. "Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach," Biometrics, The International Biometric Society, vol. 78(2), pages 679-690, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:2:d:10.1007_s10260-022-00671-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.