IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3890-d1540693.html
   My bibliography  Save this article

A New Random Coefficient Autoregressive Model Driven by an Unobservable State Variable

Author

Listed:
  • Yuxin Pang

    (School of Mathematics, Jilin University, Changchun 130012, China
    These authors contributed equally to this work.)

  • Dehui Wang

    (School of Mathematics and Statistics, Liaoning University, Shenyang 110031, China
    These authors contributed equally to this work.)

Abstract

A novel random coefficient autoregressive model is proposed, and a feature of the model is the non-stationarity of the state equation. The autoregressive coefficient is an unknown function with an unobservable state variable, which can be estimated by the local linear regression method. The iterative algorithm is constructed to estimate the parameters based on the ordinary least squares method. The ordinary least squares residuals are used to estimate the variances of the errors. The Kalman-smoothed estimation method is used to estimate the unobservable state variable because of its ability to deal with non-stationary stochastic processes. These methods allow deriving the analytical solutions. The performance of the estimation methods is evaluated through numerical simulation. The model is validated using actual time series data from the S&P/HKEX Large Cap Index.

Suggested Citation

  • Yuxin Pang & Dehui Wang, 2024. "A New Random Coefficient Autoregressive Model Driven by an Unobservable State Variable," Mathematics, MDPI, vol. 12(24), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3890-:d:1540693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3890/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3890-:d:1540693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.