IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v211y2024ics0167715224001044.html
   My bibliography  Save this article

Decorrelated empirical likelihood for generalized linear models with high-dimensional longitudinal data

Author

Listed:
  • Geng, Shuli
  • Zhang, Lixin

Abstract

This paper focuses on decorrelated empirical likelihood-based inference for longitudinal data with ultrahigh-dimensional covariates. The primary issues we aim to address involve parameter estimation and hypothesis testing for a low-dimensional parameter of interest. Under the framework of the generalized linear model, we initially consider the within-subject correlation by linearizing the precision matrix with certain known matrices, which retains optimality even if the working correlated structure is misspecified. Coupled with the decorrelated matrix, we then eliminate the influence of nuisance parameters on the estimation procedure. The proposed approach not only yields more efficient estimators compared to generalized decorrelated estimating equations but also shares the same asymptotic variance as quadratic decorrelated inference function based methods. Furthermore, we define the decorrelated empirical log-likelihood ratio test statistic to assess the significance of regression coefficients. Finally, to evaluate the performance of the proposed procedure, we conduct simulation studies and apply it to a real data example.

Suggested Citation

  • Geng, Shuli & Zhang, Lixin, 2024. "Decorrelated empirical likelihood for generalized linear models with high-dimensional longitudinal data," Statistics & Probability Letters, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:stapro:v:211:y:2024:i:c:s0167715224001044
    DOI: 10.1016/j.spl.2024.110135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224001044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    3. You-Gan Wang, 2003. "Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance," Biometrika, Biometrika Trust, vol. 90(1), pages 29-41, March.
    4. Green, Brittany & Lian, Heng & Yu, Yan & Zu, Tianhai, 2023. "Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    5. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    6. Patrick Stewart & Wei Ning, 2020. "Modified empirical likelihood-based confidence intervals for data containing many zero observations," Computational Statistics, Springer, vol. 35(4), pages 2019-2042, December.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Chenlei Leng & Cheng Yong Tang, 2012. "Penalized empirical likelihood and growing dimensional general estimating equations," Biometrika, Biometrika Trust, vol. 99(3), pages 703-716.
    9. Imbens, Guido W, 2002. "Generalized Method of Moments and Empirical Likelihood," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 493-506, October.
    10. Ouyang, Jiangrong & Bondell, Howard, 2023. "Bayesian analysis of longitudinal data via empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Cheng Yong Tang & Chenlei Leng, 2010. "Penalized high-dimensional empirical likelihood," Biometrika, Biometrika Trust, vol. 97(4), pages 905-920.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    2. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    3. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    4. Ying Sheng & Yifei Sun & Chiung‐Yu Huang & Mi‐Ok Kim, 2022. "Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach," Biometrics, The International Biometric Society, vol. 78(2), pages 679-690, June.
    5. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    6. Fang, Jianglin, 2023. "A split-and-conquer variable selection approach for high-dimensional general semiparametric models with massive data," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    7. Zheqi Wang & Dehui Wang & Jianhua Cheng, 2023. "A new autoregressive process driven by explanatory variables and past observations: an application to PM 2.5," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 619-658, June.
    8. Zhang, Jia & Shi, Haoming & Tian, Lemeng & Xiao, Fengjun, 2019. "Penalized generalized empirical likelihood in high-dimensional weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 270-283.
    9. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    10. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    11. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    12. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    13. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    14. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.
    15. Stanislav Anatolyev, 2007. "Optimal Instruments In Time Series: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 21(1), pages 143-173, February.
    16. Otsu, Taisuke, 2011. "Moderate deviations of generalized method of moments and empirical likelihood estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.
    17. Mahdieh Bayati & Seyed Kamran Ghoreishi & Jingjing Wu, 2021. "Bayesian analysis of restricted penalized empirical likelihood," Computational Statistics, Springer, vol. 36(2), pages 1321-1339, June.
    18. Chen, Song Xi & Cui, Hengjian, 2007. "On the second-order properties of empirical likelihood with moment restrictions," Journal of Econometrics, Elsevier, vol. 141(2), pages 492-516, December.
    19. Zhiguo Xiao, 2011. "Efficient Estimation of Moment Condition Models with Heterogenous Populations," Annals of Economics and Finance, Society for AEF, vol. 12(1), pages 89-107, May.
    20. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:211:y:2024:i:c:s0167715224001044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.