IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i2p31-537d832790.html
   My bibliography  Save this article

A Comparison of Existing Bootstrap Algorithms for Multi-Stage Sampling Designs

Author

Listed:
  • Sixia Chen

    (Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA)

  • David Haziza

    (Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Zeinab Mashreghi

    (Department of Mathematics and Statistics, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada)

Abstract

Multi-stage sampling designs are often used in household surveys because a sampling frame of elements may not be available or for cost considerations when data collection involves face-to-face interviews. In this context, variance estimation is a complex task as it relies on the availability of second-order inclusion probabilities at each stage. To cope with this issue, several bootstrap algorithms have been proposed in the literature in the context of a two-stage sampling design. In this paper, we describe some of these algorithms and compare them empirically in terms of bias, stability, and coverage probability.

Suggested Citation

  • Sixia Chen & David Haziza & Zeinab Mashreghi, 2022. "A Comparison of Existing Bootstrap Algorithms for Multi-Stage Sampling Designs," Stats, MDPI, vol. 5(2), pages 1-17, June.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:31-537:d:832790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/2/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/2/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antal, Erika & Tillé, Yves, 2011. "A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 534-543.
    2. Jean‐François Beaumont & Zdenek Patak, 2012. "On the Generalized Bootstrap for Sample Surveys with Special Attention to Poisson Sampling," International Statistical Review, International Statistical Institute, vol. 80(1), pages 127-148, April.
    3. David Haziza & Fulvia Mecatti & J.N.K. Rao, 2008. "Evaluation of some approximate variance estimators under the Rao-Sampford unequal probability sampling design," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 91-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wayne A. Fuller & Jason C. Legg & Yang Li, 2017. "Bootstrap Variance Estimation for Rejective Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1562-1570, October.
    2. Zhao, Puying & Haziza, David & Wu, Changbao, 2020. "Survey weighted estimating equation inference with nuisance functionals," Journal of Econometrics, Elsevier, vol. 216(2), pages 516-536.
    3. Zhonglei Wang & Liuhua Peng & Jae Kwang Kim, 2022. "Bootstrap inference for the finite population mean under complex sampling designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1150-1174, September.
    4. Pier Luigi Conti & Fulvia Mecatti, 2022. "Resampling under Complex Sampling Designs: Roots, Development and the Way Forward," Stats, MDPI, vol. 5(1), pages 1-12, March.
    5. Żądło Tomasz, 2021. "On the generalisation of Quatember’s bootstrap," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 163-178, March.
    6. Marius Stefan & Michael A. Hidiroglou, 2023. "A Bootstrap Variance Procedure for the Generalised Regression Estimator," International Statistical Review, International Statistical Institute, vol. 91(2), pages 294-317, August.
    7. Daniela Marella & Paola Vicard, 2022. "Bayesian network structural learning from complex survey data: a resampling based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 981-1013, October.
    8. Tomasz Żądło, 2021. "On the generalisation of Quatember's bootstrap," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 163-178, March.
    9. Luca Sartore & Kelly Toppin & Linda Young & Clifford Spiegelman, 2019. "Developing Integer Calibration Weights for Census of Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 26-48, March.
    10. Enrico Fabrizi & Caterina Giusti & Nicola Salvati & Nikos Tzavidis, 2014. "Mapping average equivalized income using robust small area methods," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 685-701, August.
    11. Sayed A. Mostafa & Ibrahim A. Ahmad, 2021. "Kernel Density Estimation Based on the Distinct Units in Sampling with Replacement," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 507-547, November.
    12. Pier Luigi Conti & Alberto Iorio & Alessio Guandalini & Daniela Marella & Paola Vicard & Vincenzina Vitale, 2020. "On the estimation of the Lorenz curve under complex sampling designs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 1-24, March.
    13. Spencer, Neil A. & Miller, Jeffrey W., 2024. "Strong uniform laws of large numbers for bootstrap means and other randomly weighted sums," Statistics & Probability Letters, Elsevier, vol. 211(C).
    14. Grafström Anton & Matei Alina, 2015. "Coordination of Conditional Poisson Samples," Journal of Official Statistics, Sciendo, vol. 31(4), pages 649-672, December.
    15. Papageorgiou, Ioulia & Moustaki, Irini, 2019. "Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables," LSE Research Online Documents on Economics 87592, London School of Economics and Political Science, LSE Library.
    16. Michal Brzezinski, 2014. "Statistical inference for richness measures," Applied Economics, Taylor & Francis Journals, vol. 46(14), pages 1599-1608, May.
    17. Alessio Guandalini, 2022. "Things you should know about the Gini index," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 76(4), pages 4-12, October-D.
    18. J. A. Mayor-Gallego & J. L. Moreno-Rebollo & M. D. Jiménez-Gamero, 2019. "Estimation of the finite population distribution function using a global penalized calibration method," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 1-35, March.
    19. Marie-Hélène Felt & David Laferrière, 2020. "Sample Calibration of the Online CFM Survey," Technical Reports 118, Bank of Canada.
    20. Erika Antal & Yves Tillé, 2014. "A new resampling method for sampling designs without replacement: the doubled half bootstrap," Computational Statistics, Springer, vol. 29(5), pages 1345-1363, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:31-537:d:832790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.