IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i1p97-111.html
   My bibliography  Save this article

Discrepancy in regression estimates between log-normal and gamma: some case studies

Author

Listed:
  • Rabindra Nath Das
  • Jeong-Soo Park

Abstract

In regression models with multiplicative error, estimation is often based on either the log-normal or the gamma model. It is well known that the gamma model with constant coefficient of variation and the log-normal model with constant variance give almost the same analysis. This article focuses on the discrepancies of the regression estimates between the two models based on real examples. It identifies that even though the variance or the coefficient of variation remains constant, but regression estimates may be different between the two models. It also identifies that for the same positive data set, the variance is constant under the log-normal model but non-constant under the gamma model. For this data set, the regression estimates are completely different between the two models. In the process, it explains the causes of discrepancies between the two models.

Suggested Citation

  • Rabindra Nath Das & Jeong-Soo Park, 2012. "Discrepancy in regression estimates between log-normal and gamma: some case studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 97-111, March.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:97-111
    DOI: 10.1080/02664763.2011.578618
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.578618
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.578618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Scott Hacker & Abdulnasser Hatemi-J, 2008. "Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(6), pages 601-615.
    2. Youngjo Lee & John A. Nelder, 2006. "Double hierarchical generalized linear models (with discussion)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 139-185, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabindra Nath Das & Amar Nath Shit & Apurba Ratan Ghosh, 2015. "Carp Seed Production Factors in India," Journal of Environments, Asian Online Journal Publishing Group, vol. 2(1), pages 10-17.
    2. Rabindra Nath Das & Anis Chandra Mukhopadhyay, 2017. "Correlated random effects regression analysis for a log-normally distributed variable," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 897-915, April.
    3. Sara Gustavsson & Björn Fagerberg & Gerd Sallsten & Eva M. Andersson, 2014. "Regression Models for Log-Normal Data: Comparing Different Methods for Quantifying the Association between Abdominal Adiposity and Biomarkers of Inflammation and Insulin Resistance," IJERPH, MDPI, vol. 11(4), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    2. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    3. Michaelides, Panayotis G. & Milios, John G. & Konstantakis, Konstantinos N. & Tarnaras, Panayiotis, 2015. "Quantity-of-money fluctuations and economic instability: empirical evidence for the USA (1958–2006)," MPRA Paper 90145, University Library of Munich, Germany.
    4. Alma Hales, 2015. "Liquidity and price discovery in Latin America: evidence from American depositary receipts," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(4), pages 661-678, October.
    5. Leckie, George, 2014. "runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(c02).
    6. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    7. Michaelides, Panayotis G. & Papageorgiou, Theofanis, 2012. "On the transmission of economic fluctuations from the USA to EU-15 (1960–2011)," Journal of Economics and Business, Elsevier, vol. 64(6), pages 427-438.
    8. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
    9. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    10. Katleho Daniel Makatjane & Edward Kagiso Molefe, 2020. "Predicting Regime Shifts in Johannesburg Stock Exchange All-Share Index (JSE-ALSI): A Markov-Switching Approach," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 8(2), pages 95-103.
    11. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    12. I. Gijbels & I. Prosdocimi, 2011. "Smooth estimation of mean and dispersion function in extended generalized additive models with application to Italian induced abortion data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2391-2411, December.
    13. Ergin Akalpler, 2023. "Triggering economic growth to ensure financial stability: case study of Northern Cyprus," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    14. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    15. Stephan B. Bruns & David I. Stern, 2019. "Lag length selection and p-hacking in Granger causality testing: prevalence and performance of meta-regression models," Empirical Economics, Springer, vol. 56(3), pages 797-830, March.
    16. Stephen R. Martin & Philippe Rast, 2022. "The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1318-1342, December.
    17. Juan Antonio Galán-Gutiérrez & Rodrigo Martín-García, 2022. "Fundamentals vs. Financialization during Extreme Events: From Backwardation to Contango, a Copper Market Analysis during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(4), pages 1-23, February.
    18. Konstantinos N. Konstantakis & Theofanis Papageorgiou & Apostolos G. Christopoulos & Ioannis G. Dokas & Panayotis G. Michaelides, 2019. "Business cycles in Greek maritime transport: an econometric exploration (1998–2015)," Operational Research, Springer, vol. 19(4), pages 1059-1079, December.
    19. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    20. Lorenzo Carbonari & Alessio Farcomeni & Cosimo Petracchi & Giovanni Trovato, 2024. "Macroprudential Policies and Credit Volatility," Working Paper series 24-16, Rimini Centre for Economic Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:97-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.