A first step to implement Gillespie’s algorithm with rejection sampling
Author
Abstract
Suggested Citation
DOI: 10.1007/s10260-014-0283-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
- Elliott, Robert J. & Chen, Zhiping & Duan, Qihong, 2009. "Insurance claims modulated by a hidden Brownian marked point process," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 163-172, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Markussen, Bo, 2009. "Laplace approximation of transition densities posed as Brownian expectations," Stochastic Processes and their Applications, Elsevier, vol. 119(1), pages 208-231, January.
- Julie Lyng Forman & Michael Sørensen, 2008.
"The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes,"
Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
- Michael Sørensen & Julie Lyng Forman, 2007. "The Pearson diffusions: A class of statistically tractable diffusion processes," CREATES Research Papers 2007-28, Department of Economics and Business Economics, Aarhus University.
- Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
- Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
- Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007.
"Indirect robust estimation of the short-term interest rate process,"
Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
- Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2005. "Indirect Robust Estimation of the Short-term Interest Rate Process," Working Paper Series 2005-4, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Veronika Czellar & G. Andrew Karolyi & Elvezio Ronchetti, 2007. "Indirect robust estimation of the short-term interest rate process," Post-Print hal-00463251, HAL.
- Veronika Czellar & G. Andrew Karolyi & Elvezio Ronchetti, 2005. "Indirect Robust Estimation of the Short-term interest Rate Process," FAME Research Paper Series rp135, International Center for Financial Asset Management and Engineering.
- DiCesare, Joe & Mcleish, Don, 2008. "Simulation of jump diffusions and the pricing of options," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 316-326, December.
- Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
- Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
- Vinícius Diniz Mayrink & Flávio Bambirra Gonçalves, 2017. "A Bayesian hidden Markov mixture model to detect overexpressed chromosome regions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 387-412, February.
- Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.
- Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
- Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
- Isadora Antoniano-Villalobos & Stephen G. Walker, 2016. "A Nonparametric Model for Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 126-142, January.
- Isambi Mbalawata & Simo Särkkä & Heikki Haario, 2013. "Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering," Computational Statistics, Springer, vol. 28(3), pages 1195-1223, June.
- Hermann Singer, 2014. "Importance sampling for Kolmogorov backward equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(4), pages 345-369, October.
- Yvo Pokern & Andrew M. Stuart & Petter Wiberg, 2009. "Parameter estimation for partially observed hypoelliptic diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 49-73, January.
- J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
- Christian P. Robert, 2013. "Bayesian Computational Tools," Working Papers 2013-45, Center for Research in Economics and Statistics.
- Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
- Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
More about this item
Keywords
Markov chain; Gillespie’s algorithm; Rejection sampling; Simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:24:y:2015:i:1:p:85-95. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.