Latent class models for financial data analysis: some statistical developments
Author
Abstract
Suggested Citation
DOI: 10.1007/s10260-012-0214-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Basalto, Nicolas & Bellotti, Roberto & De Carlo, Francesco & Facchi, Paolo & Pantaleo, Ester & Pascazio, Saverio, 2007. "Hausdorff clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 635-644.
- Caiado, Jorge & Crato, Nuno, 2007. "A GARCH-based method for clustering of financial time series: International stock markets evidence," MPRA Paper 2074, University Library of Munich, Germany.
- F. Lisi & E. Otranto, 2008. "Clustering Mutual Funds by Return and Risk Levels," Working Paper CRENoS 200813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Brown, Stephen J. & Goetzmann, William N., 1997.
"Mutual fund styles,"
Journal of Financial Economics, Elsevier, vol. 43(3), pages 373-399, March.
- William N. Goetzmann & Stephen J. Brown, 1998. "Mutual Fund Styles," Yale School of Management Working Papers ysm40, Yale School of Management.
- Pietro Coretto & Christian Hennig, 2010. "A simulation study to compare robust clustering methods based on mixtures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 111-135, September.
- Sergio Da Silva & Jefferson Cunha & Newton Da Costa, Jr, 2005.
"Stock selection based on cluster analysis,"
Economics Bulletin, AccessEcon, vol. 13(1), pages 1-9.
- Newton Da Costa Jr & Jefferson Cunha & Sergio Da Silva, 2005. "Stock Selection Based on Cluster Analysis," Finance 0509022, University Library of Munich, Germany.
- Otranto, Edoardo, 2008.
"Clustering heteroskedastic time series by model-based procedures,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
- E. Otranto, 2008. "Clustering Heteroskedastic Time Series by Model-Based Procedures," Working Paper CRENoS 200801, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
- Bijmolt, T.H.A. & Paas, L.J. & Vermunt, J.K., 2004. "Country and consumer segmentation : Multi-level latent class analysis of financial product ownership," Other publications TiSEM fb506162-d125-4091-9083-9, Tilburg University, School of Economics and Management.
- Moustaki, Irini & Papageorgiou, Ioulia, 2005. "Latent class models for mixed variables with applications in Archaeometry," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 659-675, March.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Vermunt, Jeroen K. & Magidson, Jay, 2003. "Latent class models for classification," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 531-537, January.
- Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
- repec:ebl:ecbull:v:13:y:2005:i:1:p:1-9 is not listed on IDEAS
- Pattarin, Francesco & Paterlini, Sandra & Minerva, Tommaso, 2004. "Clustering financial time series: an application to mutual funds style analysis," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 353-372, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- F. Lisi & E. Otranto, 2008. "Clustering Mutual Funds by Return and Risk Levels," Working Paper CRENoS 200813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Edoardo Otranto & Romana Gargano, 2015.
"Financial clustering in presence of dominant markets,"
Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.
- R. Gargano & E. Otranto, 2013. "Financial Clustering in Presence of Dominant Markets," Working Paper CRENoS 201318, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- De Luca Giovanni & Zuccolotto Paola, 2017. "A double clustering algorithm for financial time series based on extreme events," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 1-12, June.
- Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
- Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
- Natalia Casado-Sanz & Begoña Guirao & Maria Attard, 2020. "Analysis of the Risk Factors Affecting the Severity of Traffic Accidents on Spanish Crosstown Roads: The Driver’s Perspective," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
- De Angelis, Luca & Dias, José G., 2014. "Mining categorical sequences from data using a hybrid clustering method," European Journal of Operational Research, Elsevier, vol. 234(3), pages 720-730.
- Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
- G.M. Gallo & D. Lacava & E. Otranto, 2023.
"Volatility jumps and the classification of monetary policy announcements,"
Working Paper CRENoS
202306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Giampiero M. Gallo & Demetrio Lacava & Edoardo Otranto, 2023. "Volatility jumps and the classification of monetary policy announcements," Papers 2305.12192, arXiv.org.
- E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2014. "A constrained robust proposal for mixture modeling avoiding spurious solutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 27-43, March.
- João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
- Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
- Oppewal, Harmen & Paas, Leonard J. & Crouch, Geoffrey I. & Huybers, Twan, 2010. "Segmenting consumers based on how they spend a tax rebate: An analysis of the Australian stimulus payment," Journal of Economic Psychology, Elsevier, vol. 31(4), pages 510-519, August.
- Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
- Christian Walter, 2005.
"La gestion indicielle et la théorie des moyennes,"
Revue d'Économie Financière, Programme National Persée, vol. 79(2), pages 113-136.
- Christian Walter, 2005. "La gestion indicielle et la théorie des moyennes," Post-Print hal-04529992, HAL.
- M. Mucciardi & E. Otranto, 2016. "A Flexible Specification of Space–Time AutoRegressive Models," Working Paper CRENoS 201608, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
- Pietro Coretto & Michele La Rocca & Giuseppe Storti, 2020. "Improving Many Volatility Forecasts Using Cross-Sectional Volatility Clusters," JRFM, MDPI, vol. 13(4), pages 1-23, March.
More about this item
Keywords
Latent variable; Latent class model; Financial data analysis; Risk-return profile; Portfolio choice;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:22:y:2013:i:2:p:227-242. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.