IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v21y2012i1p75-91.html
   My bibliography  Save this article

Bayesian univariate space-time hierarchical model for mapping pollutant concentrations in the municipal area of Taranto

Author

Listed:
  • Serena Arima
  • Lorenza Cretarola
  • Giovanna Jona Lasinio
  • Alessio Pollice

Abstract

No abstract is available for this item.

Suggested Citation

  • Serena Arima & Lorenza Cretarola & Giovanna Jona Lasinio & Alessio Pollice, 2012. "Bayesian univariate space-time hierarchical model for mapping pollutant concentrations in the municipal area of Taranto," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 75-91, March.
  • Handle: RePEc:spr:stmapp:v:21:y:2012:i:1:p:75-91
    DOI: 10.1007/s10260-011-0178-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-011-0178-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-011-0178-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick E. Brown & Gareth O. Roberts & Kjetil F. Kåresen & Stefano Tonellato, 2000. "Blur‐generated non‐separable space–time models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 847-860.
    2. Gavin Shaddick & Jon Wakefield, 2002. "Modelling daily multivariate pollutant data at multiple sites," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 351-372, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    2. Ciro Caliendo & Maurizio Guida & Fabio Postiglione & Isidoro Russo, 2022. "A Bayesian bivariate hierarchical model with correlated parameters for the analysis of road crashes in Italian tunnels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 109-131, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    2. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    3. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    4. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    5. Richardson, Robert & Kottas, Athanasios & Sansó, Bruno, 2017. "Flexible integro-difference equation modeling for spatio-temporal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 182-198.
    6. Ruiz-Medina, M.D. & Salmeron, R. & Angulo, J.M., 2007. "Kalman filtering from POP-based diagonalization of ARH(1)," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4994-5008, June.
    7. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    8. Giorgos Sermaidis & Omiros Papaspiliopoulos & Gareth O. Roberts & Alexandros Beskos & Paul Fearnhead, 2013. "Markov Chain Monte Carlo for Exact Inference for Diffusions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 294-321, June.
    9. Ma, Chunsheng, 2003. "Nonstationary covariance functions that model space-time interactions," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 411-419, February.
    10. Robert Richardson & Athanasios Kottas & Bruno Sansó, 2020. "Spatiotemporal modelling using integro‐difference equations with bivariate stable kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1371-1392, December.
    11. Kim, Yongku & Berliner, L. Mark, 2016. "Change of spatiotemporal scale in dynamic models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 80-92.
    12. Tata Subba Rao & Sourav Das & Georgi N. Boshnakov, 2014. "A Frequency Domain Approach For The Estimation Of Parameters Of Spatio-Temporal Stationary Random Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 357-377, July.
    13. Guowen Huang & Patrick E. Brown & Sze Hang Fu & Hwashin Hyun Shin, 2022. "Daily mortality/morbidity and air quality: Using multivariate time series with seasonally varying covariances," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 148-174, January.
    14. Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
    15. Duncan Lee & Gavin Shaddick, 2010. "Spatial Modeling of Air Pollution in Studies of Its Short-Term Health Effects," Biometrics, The International Biometric Society, vol. 66(4), pages 1238-1246, December.
    16. Alexandre Rodrigues & Peter J. Diggle, 2010. "A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 553-567, December.
    17. Athanasios Kottas, 2018. "Discussion of paper “nonparametric Bayesian inference in applications” by Peter Müller, Fernando A. Quintana and Garritt L. Page," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 219-225, June.
    18. A. E. Madrid & J. M. Angulo & J. Mateu, 2016. "Point Pattern Analysis of Spatial Deformation and Blurring Effects on Exceedances," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 512-530, September.
    19. Min Deng & Wentao Yang & Qiliang Liu & Yunfei Zhang, 2017. "A divide-and-conquer method for space–time series prediction," Journal of Geographical Systems, Springer, vol. 19(1), pages 1-19, January.
    20. Sigrist, Fabio & Künsch, Hans R. & Stahel, Werner A., 2015. "spate: An R Package for Spatio-Temporal Modeling with a Stochastic Advection-Diffusion Process," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i14).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:21:y:2012:i:1:p:75-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.