IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v19y2017i1d10.1007_s10109-016-0241-y.html
   My bibliography  Save this article

A divide-and-conquer method for space–time series prediction

Author

Listed:
  • Min Deng

    (Central South University)

  • Wentao Yang

    (Central South University)

  • Qiliang Liu

    (Central South University)

  • Yunfei Zhang

    (Central South University)

Abstract

Space–time series can be partitioned into space–time smooth and space–time rough, which represent different scale characteristics. However, most existing methods for space–time series prediction directly address space–time series as a whole and do not consider the interaction between space–time smooth and space–time rough in the process of prediction. This will possibly affect the accuracy of space–time series prediction, because the interaction between these two components (i.e., space–time smooth and space–time rough) may cause one of them as dominant component, thus weakening the behavior of the other. Therefore, a divide-and-conquer method for space–time prediction is proposed in this paper. First, the observational fine-grained data are decomposed into two components: coarse-grained data and the residual terms of fine-grained data. These two components are then modeled, respectively. Finally, the predicted values of the fine-grained data are obtained by integrating the predicted values of the coarse-grained data with the residual terms. The experimental results of two groups of different space–time series demonstrated the effectiveness of the divide-and-conquer method.

Suggested Citation

  • Min Deng & Wentao Yang & Qiliang Liu & Yunfei Zhang, 2017. "A divide-and-conquer method for space–time series prediction," Journal of Geographical Systems, Springer, vol. 19(1), pages 1-19, January.
  • Handle: RePEc:kap:jgeosy:v:19:y:2017:i:1:d:10.1007_s10109-016-0241-y
    DOI: 10.1007/s10109-016-0241-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-016-0241-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-016-0241-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick E. Brown & Gareth O. Roberts & Kjetil F. Kåresen & Stefano Tonellato, 2000. "Blur‐generated non‐separable space–time models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 847-860.
    2. Kamarianakis, Yiannis & Prastacos, Poulicos, 2002. "Space-time modeling of traffic flow," ERSA conference papers ersa02p141, European Regional Science Association.
    3. Franzese, Robert J. & Hays, Jude C., 2007. "Spatial Econometric Models of Cross-Sectional Interdependence in Political Science Panel and Time-Series-Cross-Section Data," Political Analysis, Cambridge University Press, vol. 15(2), pages 140-164, April.
    4. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    5. Manuel Arellano & Stèphane Bonhomme, 2011. "Nonlinear Panel Data Analysis," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 395-424, September.
    6. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    7. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Qiong & Chand, Satish, 2015. "Spatial spillovers of regional wages: Evidence from Chinese provinces," China Economic Review, Elsevier, vol. 32(C), pages 97-109.
    2. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    3. Arbués, Pelayo & Baños, José F. & Mayor, Matías, 2015. "The spatial productivity of transportation infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 166-177.
    4. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    5. Gabriel Rodríguez & Juan Palomino, 2019. "Peru's Regional Growth and Convergence in 1979-2017: An Empirical Spatial Panel Data Analysis," Documentos de Trabajo / Working Papers 2019-478, Departamento de Economía - Pontificia Universidad Católica del Perú.
    6. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    7. repec:rri:wpaper:201303 is not listed on IDEAS
    8. Baltagi, Badi H. & Yen, Yin-Fang, 2014. "Hospital treatment rates and spillover effects: Does ownership matter?," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 193-202.
    9. Alexander Klemm & Stefan Parys, 2012. "Empirical evidence on the effects of tax incentives," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(3), pages 393-423, June.
    10. Jiang, Wenhao & Stickley, Andrew & Ueda, Michiko, 2021. "Green space and suicide mortality in Japan: An ecological study," Social Science & Medicine, Elsevier, vol. 282(C).
    11. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    12. Marzieh Ronaghi & Michael Reed & Sayed Saghaian, 2020. "The impact of economic factors and governance on greenhouse gas emission," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 153-172, April.
    13. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    14. Miguel Gómez-Antonio & Ana Angulo Garijo, 2012. "Evaluating the Effect of Public investment on Productivity Growth Using an Urban Economics Approach for the Spanish Provinces," International Regional Science Review, , vol. 35(4), pages 389-423, October.
    15. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    16. Eric Girardin & Cheikh A. T. Sall, 2018. "Inflation Dynamics of Franc-Zone Countries Determinants, Co-movements and Spatial Interactions," Open Economies Review, Springer, vol. 29(2), pages 295-320, April.
    17. repec:iab:iabjlr:v:55:i::p:art.11 is not listed on IDEAS
    18. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    19. Giovanni Millo, 2024. "An Ad Hoc Procedure for Testing Serial Correlation in Spatial Fixed-Effects Panels," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    20. Guilherme Resende & Alexandre Carvalho & Patrícia Sakowski & Túlio Cravo, 2016. "Evaluating multiple spatial dimensions of economic growth in Brazil using spatial panel data models," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 1-31, January.
    21. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    22. Hong Hiep Hoang & Cong Minh Huynh & Nguyen Minh Huy Duong & Ngoc Hoe Chau, 2022. "Determinants of foreign direct investment in Southern Central Coast of Vietnam: a spatial econometric analysis," Economic Change and Restructuring, Springer, vol. 55(1), pages 285-310, February.

    More about this item

    Keywords

    Space–time series prediction; Spatial scale; Scale characteristics; Space–time series clustering;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:19:y:2017:i:1:d:10.1007_s10109-016-0241-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.