IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v9y2017i2d10.1007_s12561-016-9150-3.html
   My bibliography  Save this article

Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health

Author

Listed:
  • Yi Liu

    (University of Bath)

  • Gavin Shaddick

    (University of Bath)

  • James V. Zidek

    (University of British Columbia)

Abstract

Performing studies on the risks of environmental hazards on human health requires accurate estimates of exposures that might be experienced by the populations at risk. Often there will be missing data and in many epidemiological studies, the locations and times of exposure measurements and health data do not match. To a large extent this will be due to the health and exposure data having arisen from completely different data sources and not as the result of a carefully designed study, leading to problems of both ‘change of support’ and ‘misaligned data’. In such cases, a direct comparison of the exposure and health outcome is often not possible without an underlying model to align the two in the spatial and temporal domains. The Bayesian approach provides the natural framework for such models; however, the large amounts of data that can arise from environmental networks means that inference using Markov Chain Monte Carlo might not be computationally feasible in this setting. Here we adapt the integrated nested Laplace approximation to implement spatio–temporal exposure models. We also propose methods for the integration of large-scale exposure models and health analyses. It is important that any model structure allows the correct propagation of uncertainty from the predictions of the exposure model through to the estimates of risk and associated confidence intervals. The methods are demonstrated using a case study of the levels of black smoke in the UK, measured over several decades, and respiratory mortality.

Suggested Citation

  • Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
  • Handle: RePEc:spr:stabio:v:9:y:2017:i:2:d:10.1007_s12561-016-9150-3
    DOI: 10.1007/s12561-016-9150-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-016-9150-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-016-9150-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan Lee & Gavin Shaddick, 2010. "Spatial Modeling of Air Pollution in Studies of Its Short-Term Health Effects," Biometrics, The International Biometric Society, vol. 66(4), pages 1238-1246, December.
    2. Luke Bornn & Gavin Shaddick & James V. Zidek, 2012. "Modeling Nonstationary Processes Through Dimension Expansion," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 281-289, March.
    3. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    4. Finley, Andrew O. & Banerjee, Sudipto & Carlin, Bradley P., 2007. "spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i04).
    5. Montserrat Fuentes & Hae-Ryoung Song & Sujit K. Ghosh & David M. Holland & Jerry M. Davis, 2006. "Spatial Association between Speciated Fine Particles and Mortality," Biometrics, The International Biometric Society, vol. 62(3), pages 855-863, September.
    6. J. V. Zidek & W. Sun & N. D. Le, 2000. "Designing and integrating composite networks for monitoring multivariate gaussian pollution fields," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 63-79.
    7. Sujit K. Sahu & Kanti V. Mardia, 2005. "A Bayesian kriged Kalman model for short‐term forecasting of air pollution levels," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 223-244, January.
    8. Jon Wakefield, 2003. "Sensitivity Analyses for Ecological Regression," Biometrics, The International Biometric Society, vol. 59(1), pages 9-17, March.
    9. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    10. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    11. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    12. Kenneth K. Lopiano & Linda J. Young & Carol A. Gotway, 2014. "A pseudo-penalized quasi-likelihood approach to the spatial misalignment problem with non-normal data," Biometrics, The International Biometric Society, vol. 70(3), pages 648-660, September.
    13. Stefano F. Tonellato, 2001. "A multivariate time series model for the analysis and prediction of carbon monoxide atmospheric concentrations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 187-200.
    14. Bo Li & Steve Sain & Linda Mearns & Henry Anderson & Sari Kovats & Kristie Ebi & Marni Bekkedal & Marty Kanarek & Jonathan Patz, 2012. "The impact of extreme heat on morbidity in Milwaukee, Wisconsin," Climatic Change, Springer, vol. 110(3), pages 959-976, February.
    15. Jonathan Wakefield & Ruth Salway, 2001. "A statistical framework for ecological and aggregate studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 119-137.
    16. Sahu, Sujit K. & Gelfand, Alan E. & Holland, David M., 2007. "High-Resolution SpaceTime Ozone Modeling for Assessing Trends," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1221-1234, December.
    17. L. J. Welty & R. D. Peng & S. L. Zeger & F. Dominici, 2009. "Bayesian Distributed Lag Models: Estimating Effects of Particulate Matter Air Pollution on Daily Mortality," Biometrics, The International Biometric Society, vol. 65(1), pages 282-291, March.
    18. Francesca Dominici & Jonathan M. Samet & Scott L. Zeger, 2000. "Combining evidence on air pollution and daily mortality from the 20 largest US cities: a hierarchical modelling strategy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 263-302.
    19. Gavin Shaddick & Jon Wakefield, 2002. "Modelling daily multivariate pollutant data at multiple sites," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 351-372, July.
    20. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    2. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    3. Samira Zahmatkesh & Mohsen Mohammadzadeh, 2021. "Bayesian prediction of spatial data with non-ignorable missingness," Statistical Papers, Springer, vol. 62(5), pages 2247-2268, October.
    4. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    5. Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
    6. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    7. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    8. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    9. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    10. Unn Dahlén & Johan Lindström & Marko Scholze, 2020. "Spatiotemporal reconstructions of global CO2‐fluxes using Gaussian Markov random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    11. Jialuo Liu & Tingjin Chu & Jun Zhu & Haonan Wang, 2022. "Large spatial data modeling and analysis: A Krylov subspace approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1115-1143, September.
    12. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    13. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    14. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    15. Dani Gamerman & Luigi Ippoliti & Pasquale Valentini, 2022. "A dynamic structural equation approach to estimate the short‐term effects of air pollution on human health," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 739-769, June.
    16. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
    17. Martins, Thiago G. & Simpson, Daniel & Lindgren, Finn & Rue, Håvard, 2013. "Bayesian computing with INLA: New features," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 68-83.
    18. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    19. Guowen Huang & Patrick E. Brown & Sze Hang Fu & Hwashin Hyun Shin, 2022. "Daily mortality/morbidity and air quality: Using multivariate time series with seasonally varying covariances," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 148-174, January.
    20. Duncan Lee & Gavin Shaddick, 2010. "Spatial Modeling of Air Pollution in Studies of Its Short-Term Health Effects," Biometrics, The International Biometric Society, vol. 66(4), pages 1238-1246, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:9:y:2017:i:2:d:10.1007_s12561-016-9150-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.