IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v11y2002i3d10.1007_bf02509829.html
   My bibliography  Save this article

Selection of the neighborhood structure for space-time Markov random field models

Author

Listed:
  • Giovanna Jona Lasinio

    (DSPSA University of Rome “La Sapienza”)

  • Francesco Lagona

    (DIPSS University of ROMA TRE)

Abstract

A space-time, univariate dataset is assumed to have been sampled from a 3-dimensional Markov Random Field where the data dependence structure is modeled through pairwise interaction parameters. The likelihood function depends upon (1) an undirected, 3-dimensional graph, where edges connect observation points, and (2) the parameter dimension that captures possible space-time anisotropy of data interaction. Automatic model selection to discriminate both the graph and the model dimension is suggested on the basis of a penalized Pseudo-likelihood function. In most cases, the procedure can be implemented using standard statistical packages capable of GLM estimation. Weak consistency of the criterion is shown to hold under mild and easily verifiable sufficient conditions. Its performance in small samples is studied providing simulation results.

Suggested Citation

  • Giovanna Jona Lasinio & Francesco Lagona, 2002. "Selection of the neighborhood structure for space-time Markov random field models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(3), pages 293-311, October.
  • Handle: RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509829
    DOI: 10.1007/BF02509829
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF02509829
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF02509829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 169(1), pages 111-120, July.
    2. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 170(1), pages 106-115, October.
    3. Stefano F. Tonellato, 2001. "A multivariate time series model for the analysis and prediction of carbon monoxide atmospheric concentrations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 187-200.
    4. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    5. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 167(1), pages 118-127, January.
    6. Francesco Lagona, 2002. "Adjacency selection in Markov Random Fields for high spatial resolution hyperspectral data," Journal of Geographical Systems, Springer, vol. 4(1), pages 53-68, March.
    7. Guyon, Xavier & Yao, Jian-feng, 1999. "On the Underfitting and Overfitting Sets of Models Chosen by Order Selection Criteria," Journal of Multivariate Analysis, Elsevier, vol. 70(2), pages 221-249, August.
    8. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    9. -, 1999. "Major statistical publications: abstracts," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 27448, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    10. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 168(1), pages 117-126, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Destefanis & Giuseppe Storti, 2002. "Measuring cross-country technological catch-up through variable-parameter FDH," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 109-125, February.
    2. Frisén, Marianne & Andersson, Eva & Pettersson, Kjell, 2008. "Semiparametric estimation of outbreak regression," Research Reports 2007:13, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    3. Xavier Guyon & Cécile Hardouin, 2014. "Misparametrization subsets for penalized least squares model selection," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 283-294, October.
    4. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    5. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    6. Jacint Balaguer & Manuel Cantavella-Jorda, 2004. "Structural change in exports and economic growth: cointegration and causality analysis for Spain (1961-2000)," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 473-477.
    7. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    8. Muhammad Farooq Arby & Amjad Ali, 2017. "Threshold Inflation in Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 13, pages 1-19.
    9. Ramona Dumitriu & Razvan Stefanescu, 2015. "The Relationship Between Romanian Exports And Economic Growth After The Adhesion To European Union," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 17-26.
    10. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.