IDEAS home Printed from https://ideas.repec.org/p/hhs/gunsru/2007_013.html
   My bibliography  Save this paper

Semiparametric estimation of outbreak regression

Author

Listed:
  • Frisén, Marianne

    (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

  • Andersson, Eva

    (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

  • Pettersson, Kjell

    (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

Abstract

A regression may be constant for small values of the independent variable (for example time), but then a monotonic increase starts. Such an “outbreak” regression is of interest for example in the study of the outbreak of an epidemic disease. We give the least square estimators for this outbreak regression without assumption of a parametric regression function. It is shown that the least squares estimators are also the maximum likelihood estimators for distributions in the regular exponential family such as the Gaussian or Poisson distribution. The approach is thus semiparametric. The method is applied to Swedish data on influenza, and the properties are demonstrated by a simulation study. The consistency of the estimator is proved.

Suggested Citation

  • Frisén, Marianne & Andersson, Eva & Pettersson, Kjell, 2008. "Semiparametric estimation of outbreak regression," Research Reports 2007:13, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  • Handle: RePEc:hhs:gunsru:2007_013
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2077/10526
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Efromovich S., 2001. "Density Estimation Under Random Censorship and Order Restrictions: From Asymptotic to Small Samples," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 667-684, June.
    2. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    3. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 169(1), pages 111-120, July.
    4. E. Andersson, 2002. "Monitoring cyclical processes. A non-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 973-990.
    5. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21, February.
    6. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 170(1), pages 106-115, October.
    7. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 167(1), pages 118-127, January.
    8. -, 1999. "Major statistical publications: abstracts," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 27448, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. N/A, 1999. "Statistical Appendix," National Institute Economic Review, National Institute of Economic and Social Research, vol. 168(1), pages 117-126, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanna Jona Lasinio & Francesco Lagona, 2002. "Selection of the neighborhood structure for space-time Markov random field models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(3), pages 293-311, October.
    2. Sergio Destefanis & Giuseppe Storti, 2002. "Measuring cross-country technological catch-up through variable-parameter FDH," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 109-125, February.
    3. Pettersson, Kjell, 2008. "On curve estimation under order restrictions," Research Reports 2007:15, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    4. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    5. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    6. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Statistical Surveillance of Epidemics: Peak Detection of Influenza in Sweden," Research Reports 2007:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    7. Frisén, Marianne, 2011. "Methods and evaluations for surveillance in industry, business, finance, and public health," Research Reports 2011:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    8. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    9. Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    11. Andersson, E., 2005. "On-line detection of turning points using non-parametric surveillance: The effect of the growth after the turn," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 433-439, July.
    12. Christian Sonesson, 2003. "Evaluations of some Exponentially Weighted Moving Average methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1115-1133.
    13. Bock, David, 2007. "Evaluations of likelihood based surveillance of volatility," Research Reports 2007:9, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    14. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
    15. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    16. Frisén, Marianne & Andersson, Eva, 2008. "Semiparametric surveillance of outbreaks," Research Reports 2007:11, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    17. David Bock, 2008. "Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(2), pages 213-227.
    18. David Bock & Eva Andersson & Marianne Frisén, 2005. "Statistical surveillance of cyclical processes with application to turns in business cycles," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 465-490.
    19. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    20. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.

    More about this item

    Keywords

    Constant Base-line; Monotonic change; Exponential family;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunsru:2007_013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Linus Schiöler (email available below). General contact details of provider: http://www.statistics.gu.se/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.