IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4351-d977798.html
   My bibliography  Save this article

Neural Subspace Learning for Surface Defect Detection

Author

Listed:
  • Bin Liu

    (School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China)

  • Weifeng Chen

    (School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China)

  • Bo Li

    (School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China)

  • Xiuping Liu

    (School of Mathematical Science, Dalian University of Technology, Dalian 116024, China)

Abstract

Surface defect inspection is a key technique in industrial product assessments. Compared with other visual applications, industrial defect inspection suffers from a small sample problem and a lack of labeled data. Therefore, conventional deep-learning methods depending on huge supervised samples cannot be directly generalized to this task. To deal with the lack of labeled data, unsupervised subspace learning provides more clues for the task of defect inspection. However, conventional subspace learning methods focus on studying the linear subspace structure. In order to explore the nonlinear manifold structure, a novel neural subspace learning algorithm is proposed by substituting linear operators with nonlinear neural networks. The low-rank property of the latent space is approximated by limiting the dimensions of the encoded feature, and the sparse coding property is simulated by quantized autoencoding. To overcome the small sample problem, a novel data augmentation strategy called thin-plate-spline deformation is proposed. Compared with the rigid transformation methods used in previous literature, our strategy could generate more reliable training samples. Experiments on real-world datasets demonstrate that our method achieves state-of-the-art performance compared with unsupervised methods. More importantly, the proposed method is competitive and has a better generalization capability compared with supervised methods based on deep learning techniques.

Suggested Citation

  • Bin Liu & Weifeng Chen & Bo Li & Xiuping Liu, 2022. "Neural Subspace Learning for Surface Defect Detection," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4351-:d:977798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiarong Shi & Wei Yang & Longquan Yong & Xiuyun Zheng, 2014. "Low-Rank Representation for Incomplete Data," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, December.
    2. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campos, Eduardo Lima & Cysne, Rubens Penha, 2017. "A time-varying fiscal reaction function for Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 795, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    2. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    3. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    4. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    5. Jacint Balaguer & Manuel Cantavella-Jorda, 2004. "Structural change in exports and economic growth: cointegration and causality analysis for Spain (1961-2000)," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 473-477.
    6. Muhammad Farooq Arby & Amjad Ali, 2017. "Threshold Inflation in Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 13, pages 1-19.
    7. Ramona Dumitriu & Razvan Stefanescu, 2015. "The Relationship Between Romanian Exports And Economic Growth After The Adhesion To European Union," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 17-26.
    8. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4351-:d:977798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.