IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v3y2013i1p90-111d23735.html
   My bibliography  Save this article

Pinto Beans ( Phaseolus vulgaris L.) as a Functional Food: Implications on Human Health

Author

Listed:
  • Cristiane R. S. Câmara

    (Department of Food Science and Technology, 143 Filley Hall—East Campus, University of Nebraska-Lincoln, Lincoln, NE 68583, USA)

  • Carlos A. Urrea

    (Department of Agronomy and Horticulture, 4502 Ave I Panhandle Research Extension Center, University of Nebraska-Lincoln, Scottsbluff, NE 69361, USA)

  • Vicki Schlegel

    (Department of Food Science and Technology, 143 Filley Hall—East Campus, University of Nebraska-Lincoln, Lincoln, NE 68583, USA)

Abstract

Most foods are considered functional in terms of providing nutrients and energy to sustain daily life, but dietary systems that are capable of preventing or remediating a stressed or diseased state are classified as functional foods. Dry beans ( Phaseolus vulgaris L.) contain high levels of chemically diverse components (phenols, resistance starch, vitamins, fructooligosaccharides) that have shown to protect against such conditions as oxidative stress, cardiovascular disease, diabetes, metabolic syndrome, and many types of cancer, thereby positioning this legume as an excellent functional food. Moreover, the United States has a rich dry bean history and is currently a top producer of dry beans in the world with pinto beans accounting for the vast majority. Despite these attributes, dry bean consumption in the US remains relatively low. Therefore, the objective of this manuscript is to review dry beans as an important US agricultural crop and as functional food for the present age with an emphasis on pinto beans.

Suggested Citation

  • Cristiane R. S. Câmara & Carlos A. Urrea & Vicki Schlegel, 2013. "Pinto Beans ( Phaseolus vulgaris L.) as a Functional Food: Implications on Human Health," Agriculture, MDPI, vol. 3(1), pages 1-22, February.
  • Handle: RePEc:gam:jagris:v:3:y:2013:i:1:p:90-111:d:23735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/3/1/90/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/3/1/90/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Turnbaugh & Ruth E. Ley & Michael A. Mahowald & Vincent Magrini & Elaine R. Mardis & Jeffrey I. Gordon, 2006. "An obesity-associated gut microbiome with increased capacity for energy harvest," Nature, Nature, vol. 444(7122), pages 1027-1031, December.
    2. Carl Nathan, 2002. "Points of control in inflammation," Nature, Nature, vol. 420(6917), pages 846-852, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doratha A Byrd & Jun Chen & Emily Vogtmann & Autumn Hullings & Se Jin Song & Amnon Amir & Muhammad G Kibriya & Habibul Ahsan & Yu Chen & Heidi Nelson & Rob Knight & Jianxin Shi & Nicholas Chia & Rashm, 2019. "Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
    2. Kiran Konain & Sadia & Turfa Nadeem & Adeed Khan & Warda Iqbal & Arsalan & Amir Javed & Ruby Khan & Kainat Jamil & Kainat Jamil, 2018. "Importance of Probiotics in Gastrointestinal Tract," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(3), pages 128-143, March.
    3. Marjolein Heddes & Baraa Altaha & Yunhui Niu & Sandra Reitmeier & Karin Kleigrewe & Dirk Haller & Silke Kiessling, 2022. "The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Sibusisiwe Magama & Asita Okorie Asita & Teboho Derrick Skundla, 2020. "Evaluation of Aster bakerianus Burtt Davy ex C.A. Sm. Crude Root Extract for Acute Antiinflammatory Activity in Rats," International Journal of Sciences, Office ijSciences, vol. 9(09), pages 1-15, September.
    5. Hui Xia & Beijia Zhou & Jing Sui & Wenqing Ma & Shaokang Wang & Ligang Yang & Guiju Sun, 2022. "Lycium barbarum Polysaccharide Regulates the Lipid Metabolism and Alters Gut Microbiota in High-Fat Diet Induced Obese Mice," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    6. Davillas, Apostolos & Pudney, Stephen, 2016. "Concordance of health states in couples. Analysis of self-reported, nurse administered and blood-based biomarker data in Understanding Society," ISER Working Paper Series 2016-15, Institute for Social and Economic Research.
    7. Vinod Nikhra, 2019. "Therapeutic Potential of Gut Microbiome Manipulation: Concepts in Fecal Microbiota Transplantation," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 1-9, June.
    8. Vinod Nikhra, 2019. "The Novel Dimensions of Cardio-Metabolic Health Gut Microbiota, Dysbiosis and its Fallouts," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 28-37, June.
    9. Shinji Fukuda & Yumiko Nakanishi & Eisuke Chikayama & Hiroshi Ohno & Tsuneo Hino & Jun Kikuchi, 2009. "Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-10, March.
    10. James Robert White & Niranjan Nagarajan & Mihai Pop, 2009. "Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-11, April.
    11. NS Mahabal & BB Kaliwal, 2017. "In Vitro Anti-Inflammatory Activity of L-Asparaginase from Soil Rhizosphere Fungus Aspergillus tamarii," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 4(5), pages 80-84, May.
    12. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    13. Karen D. Corbin & Elvis A. Carnero & Blake Dirks & Daria Igudesman & Fanchao Yi & Andrew Marcus & Taylor L. Davis & Richard E. Pratley & Bruce E. Rittmann & Rosa Krajmalnik-Brown & Steven R. Smith, 2023. "Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Michael DiMarzio & Brigida Rusconi & Neela H Yennawar & Mark Eppinger & Andrew D Patterson & Edward G Dudley, 2017. "Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    15. Hanan H. Wahid & Ayesha Bahez & Mohammed I. A. Mustafa Mahmud & Farih N. Hashim & Norhidayah Kamarudin & Roesnita Baharuddin & Ahmad M. Ahmad Mustafa & Hamizah Ismail, 2022. "Maternal Risk Factors For Group B Streptococcus (Gbs) Vaginal Colonization," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 6(2), pages 55-58, August.
    16. Tamar Ringel-Kulka & Jing Cheng & Yehuda Ringel & Jarkko Salojärvi & Ian Carroll & Airi Palva & Willem M de Vos & Reetta Satokari, 2013. "Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    17. Hannah Lees & Jonathan Swann & Simon M Poucher & Jeremy K Nicholson & Elaine Holmes & Ian D Wilson & Julian R Marchesi, 2014. "Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    18. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Liat Shenhav & Ori Furman & Leah Briscoe & Mike Thompson & Justin D Silverman & Itzhak Mizrahi & Eran Halperin, 2019. "Modeling the temporal dynamics of the gut microbial community in adults and infants," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-21, June.
    20. Isaac G. Crusoe & Ian C. Chiwaya & Tasnim I. Habib, 2024. "Immune Control of Gut Microbiota Prevents Obesity and the Effect of Antibiotic on Microbial Population," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 1-9, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:3:y:2013:i:1:p:90-111:d:23735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.