IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v10y2018i2d10.1007_s12561-017-9203-2.html
   My bibliography  Save this article

Key Aspects of Modern, Quantitative Drug Development

Author

Listed:
  • Eric Gibson

    (Novartis Pharmaceuticals)

  • Frank Bretz

    (Novartis Pharma AG
    Medical University of Vienna)

  • Michael Looby

    (Novartis Pharma AG)

  • Bjoern Bornkamp

    (Novartis Pharma AG)

Abstract

One of the main goals of modern drug development is customized care, where doctors match the right patient to the right treatment at the right dose, based on quantitative evidence. In this paper we review three key aspects of drug development that are critical towards achieving this goal. More specifically, we discuss (i) the advantages of modern model-based dose-finding as opposed to traditional pairwise comparisons, (ii) the value of pharmacometrical modeling, understanding the variability in how patients metabolize, tolerate, and respond to drugs, and (iii) the potential impact of enrichment strategies to identify study populations that are most likely to benefit from the investigational drug under development.

Suggested Citation

  • Eric Gibson & Frank Bretz & Michael Looby & Bjoern Bornkamp, 2018. "Key Aspects of Modern, Quantitative Drug Development," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 283-296, August.
  • Handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9203-2
    DOI: 10.1007/s12561-017-9203-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-017-9203-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-017-9203-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dette, Holger & Bretz, Frank & Pepelyshev, Andrey & Pinheiro, José, 2008. "Optimal Designs for Dose-Finding Studies," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1225-1237.
    2. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    3. F. Bretz & J. C. Pinheiro & M. Branson, 2005. "Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies," Biometrics, The International Biometric Society, vol. 61(3), pages 738-748, September.
    4. Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    2. Qiqi Deng & Xiaofei Bai & Dacheng Liu & Dooti Roy & Zhiliang Ying & Dan‐Yu Lin, 2019. "Power and sample size for dose‐finding studies with survival endpoints under model uncertainty," Biometrics, The International Biometric Society, vol. 75(1), pages 308-314, March.
    3. Frank Schaarschmidt & Christian Ritz & Ludwig A. Hothorn, 2022. "The Tukey trend test: Multiplicity adjustment using multiple marginal models," Biometrics, The International Biometric Society, vol. 78(2), pages 789-797, June.
    4. Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).
    5. repec:jss:jstsof:29:i07 is not listed on IDEAS
    6. Jiajing Xu & Guosheng Yin & David Ohlssen & Frank Bretz, 2016. "Bayesian two-stage dose finding for cytostatic agents via model adaptation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 465-482, April.
    7. Bretz, Frank & Dette, Holger & Pinheiro, José, 2008. "Practical considerations for optimal designs in clinical dose finding studies," Technical Reports 2008,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    9. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    10. Sai Ding & John Knight, 2011. "Why has China Grown So Fast? The Role of Physical and Human Capital Formation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(2), pages 141-174, April.
    11. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    12. Wiens, Douglas P., 2021. "Robust designs for dose–response studies: Model and labelling robustness," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    13. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    14. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    15. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    16. Kathrin Möllenhoff & Frank Bretz & Holger Dette, 2020. "Equivalence of regression curves sharing common parameters," Biometrics, The International Biometric Society, vol. 76(2), pages 518-529, June.
    17. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    18. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    19. Coleman, Stephen, 2005. "Testing Theories with Qualitative and Quantitative Predictions," MPRA Paper 105171, University Library of Munich, Germany.
    20. Ewout W. Steyerberg, 2005. "Local Applicability of Clinical and Model-Based Probability Estimates," Medical Decision Making, , vol. 25(6), pages 678-680, November.
    21. Qiqi Deng & Kun Wang & Xiaofei Bai & Naitee Ting, 2019. "A Cautionary Note When a Dose-Ranging Study is Used for Proving the Concept," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 127-140, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9203-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.