IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v158y2021ics0167947321000232.html
   My bibliography  Save this article

Robust designs for dose–response studies: Model and labelling robustness

Author

Listed:
  • Wiens, Douglas P.

Abstract

Methods for the construction of dose–response designs are presented that are robust against possible model misspecifications and mislabelled responses. The asymptotic properties are studied, leading to asymptotically minimax designs that minimize the maximum – over neighbourhoods of both types of model inadequacies – value of the mean squared error of the predictions. Both sequential and adaptive approaches are studied. Finite sample simulations and examples illustrate the gains to be made by adaptivity.

Suggested Citation

  • Wiens, Douglas P., 2021. "Robust designs for dose–response studies: Model and labelling robustness," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000232
    DOI: 10.1016/j.csda.2021.107189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000232
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hengzhen & Chen, Xueping, 2021. "Compromise design for combination experiment of two drugs," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Magnus, Jan R., 1985. "On Differentiating Eigenvalues and Eigenvectors," Econometric Theory, Cambridge University Press, vol. 1(2), pages 179-191, August.
    3. Pengfei Li & Douglas P. Wiens, 2011. "Robustness of design in dose–response studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 215-238, March.
    4. Dette, Holger & Bretz, Frank & Pepelyshev, Andrey & Pinheiro, José, 2008. "Optimal Designs for Dose-Finding Studies," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1225-1237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karunamuni, Rohana J. & Tang, Qingguo & Zhao, Bangxin, 2015. "Robust and efficient estimation of effective dose," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 47-60.
    2. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Broda, S. & Paolella, M.S., 2009. "Evaluating the density of ratios of noncentral quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1264-1270, February.
    4. Jochmans, Koen, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Journal of Econometrics, Elsevier, vol. 242(2).
    5. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Eduardo Abi Jaber & Bruno Bouchard & Camille Illand & Eduardo Jaber, 2018. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Working Papers hal-01349639, HAL.
    7. Antonio Diez de Los Rios, 2015. "A New Linear Estimator for Gaussian Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 282-295, April.
    8. Baringhaus, Ludwig & Gaigall, Daniel, 2017. "Hotelling’s T2 tests in paired and independent survey samples: An efficiency comparison," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 177-198.
    9. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2013. "Nonparametric estimation of finite mixtures," Working Papers hal-00972868, HAL.
    10. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    11. Yassine Sbai Sassi, 2023. "The Ordinary Least Eigenvalues Estimator," Papers 2304.12554, arXiv.org.
    12. Dette, Holger & Holland-Letz, Tim, 2008. "A geometric characterization of c-optimal designs for heteroscedastic regression," Technical Reports 2008,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Nonparametric estimation of finite measures," CeMMAP working papers 11/14, Institute for Fiscal Studies.
    14. Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
    15. Eleonora Cavallaro & Bernardo Maggi, 2016. "State of confidence, overborrowing and the macroeconomic stabilization puzzle: a system dynamic approach," Working Papers in Public Economics 174, Department of Economics and Law, Sapienza University of Roma.
    16. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    17. repec:spo:wpmain:info:hdl:2441/7o52iohb7k6srk09n8t4k21sm is not listed on IDEAS
    18. Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015. "A semiparametric model for heterogeneous panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
    19. Idais, Osama, 2020. "A note on locally optimal designs for generalized linear models with restricted support," Statistics & Probability Letters, Elsevier, vol. 159(C).
    20. repec:hal:wpspec:info:hdl:2441/7o52iohb7k6srk09n8t4k21sm is not listed on IDEAS
    21. Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
    22. Bystrov, Victor & di Salvatore, Antonietta, 2013. "Martingale approximation of eigenvalues for common factor representation," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 233-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:158:y:2021:i:c:s0167947321000232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.