IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v029i07.html
   My bibliography  Save this article

MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies

Author

Listed:
  • Bornkamp, Björn
  • Pinheiro, José
  • Bretz, Frank

Abstract

In this article the MCPMod package for the R programming environment will be introduced. It implements a recently developed methodology for the design and analysis of dose-response studies that combines aspects of multiple comparison procedures and modeling approaches (Bretz et al. 2005). The MCPMod package provides tools for the analysis of dose finding trials, as well as a variety of tools necessary to plan an experiment to be analyzed using the MCP-Mod methodology.

Suggested Citation

  • Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).
  • Handle: RePEc:jss:jstsof:v:029:i07
    DOI: http://hdl.handle.net/10.18637/jss.v029.i07
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v029i07/v29i07.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v029i07/MCPMod_1.0-1.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v029i07/v29i07.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v029.i07?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Bretz & J. C. Pinheiro & M. Branson, 2005. "Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies," Biometrics, The International Biometric Society, vol. 61(3), pages 738-748, September.
    2. Dette, Holger & Bretz, Frank & Pepelyshev, Andrey & Pinheiro, José, 2008. "Optimal Designs for Dose-Finding Studies," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1225-1237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip N. Newsome & Arun J. Sanyal & Guy Neff & Jörn M. Schattenberg & Vlad Ratziu & Judith Ertle & Jasmin Link & Alison Mackie & Corinna Schoelch & Eric Lawitz, 2023. "A randomised Phase IIa trial of amine oxidase copper-containing 3 (AOC3) inhibitor BI 1467335 in adults with non-alcoholic steatohepatitis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Md Abu Manju & Math J. J. M. Candel & Gerard J. P. van Breukelen, 2019. "SamP2CeT: an interactive computer program for sample size and power calculation for two-level cost-effectiveness trials," Computational Statistics, Springer, vol. 34(1), pages 47-70, March.
    3. Qiqi Deng & Xiaofei Bai & Dacheng Liu & Dooti Roy & Zhiliang Ying & Dan‐Yu Lin, 2019. "Power and sample size for dose‐finding studies with survival endpoints under model uncertainty," Biometrics, The International Biometric Society, vol. 75(1), pages 308-314, March.
    4. Christian Ritz & Florent Baty & Jens C Streibig & Daniel Gerhard, 2015. "Dose-Response Analysis Using R," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    5. Frank Schaarschmidt & Christian Ritz & Ludwig A. Hothorn, 2022. "The Tukey trend test: Multiplicity adjustment using multiple marginal models," Biometrics, The International Biometric Society, vol. 78(2), pages 789-797, June.
    6. Eric Gibson & Frank Bretz & Michael Looby & Bjoern Bornkamp, 2018. "Key Aspects of Modern, Quantitative Drug Development," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 283-296, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:29:i07 is not listed on IDEAS
    2. Jiajing Xu & Guosheng Yin & David Ohlssen & Frank Bretz, 2016. "Bayesian two-stage dose finding for cytostatic agents via model adaptation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 465-482, April.
    3. Eric Gibson & Frank Bretz & Michael Looby & Bjoern Bornkamp, 2018. "Key Aspects of Modern, Quantitative Drug Development," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 283-296, August.
    4. Bretz, Frank & Dette, Holger & Pinheiro, José, 2008. "Practical considerations for optimal designs in clinical dose finding studies," Technical Reports 2008,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Wiens, Douglas P., 2021. "Robust designs for dose–response studies: Model and labelling robustness," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    6. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    7. Kathrin Möllenhoff & Frank Bretz & Holger Dette, 2020. "Equivalence of regression curves sharing common parameters," Biometrics, The International Biometric Society, vol. 76(2), pages 518-529, June.
    8. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    9. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    10. Qiqi Deng & Kun Wang & Xiaofei Bai & Naitee Ting, 2019. "A Cautionary Note When a Dose-Ranging Study is Used for Proving the Concept," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 127-140, April.
    11. Beibei Guo & Ying Yuan, 2023. "DROID: dose‐ranging approach to optimizing dose in oncology drug development," Biometrics, The International Biometric Society, vol. 79(4), pages 2907-2919, December.
    12. Liu, W. & Ah-Kine, P. & Bretz, F. & Hayter, A.J., 2013. "Exact simultaneous confidence intervals for a finite set of contrasts of three, four or five generally correlated normal means," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 141-148.
    13. Kathrin Möllenhoff & Kirsten Schorning & Franziska Kappenberg, 2023. "Identifying alert concentrations using a model‐based bootstrap approach," Biometrics, The International Biometric Society, vol. 79(3), pages 2076-2088, September.
    14. Miller, Frank & Dette, Holger & Guilbaud, Olivier, 2007. "Optimal designs for estimating the interesting part of a dose-effect curve," Technical Reports 2007,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Dette, Holger & Scheder, Regine, 2008. "A finite sample comparison of nonparametric estimates of the effective dose in quantal bioassay," Technical Reports 2008,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Jianan Peng & Chu‐In Charles Lee & Karelyn A. Davis & Weizhen Wang, 2008. "Stepwise Confidence Intervals for Monotone Dose–Response Studies," Biometrics, The International Biometric Society, vol. 64(3), pages 877-885, September.
    17. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    18. Nairanjana Dasgupta & Monte J. Shaffer, 2012. "Many-to-one comparison of nonlinear growth curves for Washington's Red Delicious apple," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1781-1795, April.
    19. Dette, Holger & Holland-Letz, Tim, 2008. "A geometric characterization of c-optimal designs for heteroscedastic regression," Technical Reports 2008,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Qiqi Deng & Xiaofei Bai & Dacheng Liu & Dooti Roy & Zhiliang Ying & Dan‐Yu Lin, 2019. "Power and sample size for dose‐finding studies with survival endpoints under model uncertainty," Biometrics, The International Biometric Society, vol. 75(1), pages 308-314, March.
    21. Yu, Jun & Kong, Xiangshun & Ai, Mingyao & Tsui, Kwok Leung, 2018. "Optimal designs for dose–response models with linear effects of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 217-228.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:029:i07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.