IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v5y2024i2d10.1007_s43069-024-00300-4.html
   My bibliography  Save this article

Algorithms for Scheduling Deadline-Sensitive Malleable Tasks

Author

Listed:
  • Xiaohu Wu

    (National Engineering Research Center of Mobile Network Technologies, Beijing University of Posts and Telecommunications, China)

  • Patrick Loiseau

    (Inria, FairPlay team, Palaiseau, France)

Abstract

Due to the ubiquity of batch data processing, the related problems of scheduling malleable batch tasks have received significant attention. We consider a fundamental model where a set of tasks is to be processed on multiple identical machines and each task is specified by a value, a workload, a deadline and a parallelism bound. Within the parallelism bound, the number of machines assigned to a task can vary over time without affecting its workload. In this paper, we identify a boundary condition and prove by construction that a set of malleable tasks with deadlines can be finished by their deadlines if and only if it satisfies the boundary condition. This core result plays a key role in the design and analysis of scheduling algorithms: (i) when several typical objectives are considered, such as social welfare maximization, machine minimization, and minimizing the maximum weighted completion time, and, (ii) when the algorithmic design techniques such as greedy and dynamic programming are applied to the social welfare maximization problem. As a result, we give four new or improved algorithms for the above problems.

Suggested Citation

  • Xiaohu Wu & Patrick Loiseau, 2024. "Algorithms for Scheduling Deadline-Sensitive Malleable Tasks," SN Operations Research Forum, Springer, vol. 5(2), pages 1-38, June.
  • Handle: RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00300-4
    DOI: 10.1007/s43069-024-00300-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00300-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00300-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    2. Wu, Xiaohu & Loiseau, Patrick, 2023. "Efficient approximation algorithms for scheduling moldable tasks," European Journal of Operational Research, Elsevier, vol. 310(1), pages 71-83.
    3. W. A. Horn, 1974. "Some simple scheduling algorithms," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 21(1), pages 177-185, March.
    4. Viswanath Nagarajan & Joel Wolf & Andrey Balmin & Kirsten Hildrum, 2019. "Malleable scheduling for flows of jobs and applications to MapReduce," Journal of Scheduling, Springer, vol. 22(4), pages 393-411, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    2. T.C.E. Cheng & Svetlana A. Kravchenko & Bertrand M.T. Lin, 2017. "Preemptive parallel‐machine scheduling with a common server to minimize makespan," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 388-398, August.
    3. Willem E. de Paepe & Jan Karel Lenstra & Jiri Sgall & René A. Sitters & Leen Stougie, 2004. "Computer-Aided Complexity Classification of Dial-a-Ride Problems," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 120-132, May.
    4. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    5. Huynh Tuong, Nguyen & Soukhal, Ameur & Billaut, Jean-Charles, 2010. "A new dynamic programming formulation for scheduling independent tasks with common due date on parallel machines," European Journal of Operational Research, Elsevier, vol. 202(3), pages 646-653, May.
    6. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    7. Alexander Grigoriev & Martijn Holthuijsen & Joris van de Klundert, 2005. "Basic scheduling problems with raw material constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 527-535, September.
    8. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    9. Zhi-Long Chen & Nicholas G. Hall, 2010. "The Coordination of Pricing and Scheduling Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 77-92, April.
    10. Imed Kacem & Hans Kellerer & Yann Lanuel, 2015. "Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 403-412, October.
    11. Ji, Min & He, Yong & Cheng, T.C.E., 2007. "Batch delivery scheduling with batch delivery cost on a single machine," European Journal of Operational Research, Elsevier, vol. 176(2), pages 745-755, January.
    12. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2017. "Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 724-736, November.
    13. Tom Demeulemeester & Dries Goossens & Ben Hermans & Roel Leus, 2023. "Fair integer programming under dichotomous and cardinal preferences," Papers 2306.13383, arXiv.org, revised Apr 2024.
    14. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    15. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    16. Nodari Vakhania, 2019. "Dynamic Restructuring Framework for Scheduling with Release Times and Due-Dates," Mathematics, MDPI, vol. 7(11), pages 1-42, November.
    17. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2013. "Single machine total tardiness maximization problems: complexity and algorithms," Annals of Operations Research, Springer, vol. 207(1), pages 121-136, August.
    18. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich, 2020. "Scheduling problems with controllable processing times and a common deadline to minimize maximum compression cost," Journal of Global Optimization, Springer, vol. 76(3), pages 471-490, March.
    19. Briskorn, Dirk & Davari, Morteza & Matuschke, Jannik, 2021. "Single-machine scheduling with an external resource," European Journal of Operational Research, Elsevier, vol. 293(2), pages 457-468.
    20. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00300-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.