IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v3y2022i3d10.1007_s43069-022-00160-w.html
   My bibliography  Save this article

Predictive Analytics for Real-time Auction Bidding Support: a Case on Fantasy Football

Author

Listed:
  • Vittorio Maniezzo

    (University of Bologna)

  • Fabian Andres Aspee Encina

    (University of Bologna)

Abstract

This work reports about an end-to-end business analytics experiment, applying predictive and prescriptive analytics to real-time bidding support for fantasy football draft auctions. Forecast methods are used to quantify the expected return of each investment alternative, while subgradient optimization is used to provide adaptive online recommendations on the allocation of scarce budget resources. A distributed front-end implementation of the prescriptive modules and the rankings of simulated leagues testify the viability of this architecture for actual support.

Suggested Citation

  • Vittorio Maniezzo & Fabian Andres Aspee Encina, 2022. "Predictive Analytics for Real-time Auction Bidding Support: a Case on Fantasy Football," SN Operations Research Forum, Springer, vol. 3(3), pages 1-23, September.
  • Handle: RePEc:spr:snopef:v:3:y:2022:i:3:d:10.1007_s43069-022-00160-w
    DOI: 10.1007/s43069-022-00160-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-022-00160-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-022-00160-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Boulier, Bryan L. & Stekler, H. O., 2003. "Predicting the outcomes of National Football League games," International Journal of Forecasting, Elsevier, vol. 19(2), pages 257-270.
    3. Müller, Oliver & Simons, Alexander & Weinmann, Markus, 2017. "Beyond crowd judgments: Data-driven estimation of market value in association football," European Journal of Operational Research, Elsevier, vol. 263(2), pages 611-624.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baker, Rose D. & McHale, Ian G., 2013. "Forecasting exact scores in National Football League games," International Journal of Forecasting, Elsevier, vol. 29(1), pages 122-130.
    2. Song, Kai & Shi, Jian, 2020. "A gamma process based in-play prediction model for National Basketball Association games," European Journal of Operational Research, Elsevier, vol. 283(2), pages 706-713.
    3. Pedro Garcia‐del‐Barrio & Pablo Agnese, 2023. "To comply or not to comply? How a UEFA wage‐to‐revenue requirement might affect the sport and managerial performance of soccer clubs," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 767-786, March.
    4. Bryan Boulier & H. O. Stekler & Sarah Amundson, 2006. "Testing the efficiency of the National Football League betting market," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 279-284.
    5. Craig, J. Dean & Winchester, Niven, 2021. "Predicting the national football league potential of college quarterbacks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 733-743.
    6. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    7. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    8. Justin Cox & Adam L. Schwartz & Bonnie F. Van Ness & Robert A. Van Ness, 2021. "The Predictive Power of College Football Spreads: Regular Season Versus Bowl Games," Journal of Sports Economics, , vol. 22(3), pages 251-273, April.
    9. Chunyang Huang & Shaoliang Zhang, 2023. "Explainable artificial intelligence model for identifying Market Value in Professional Soccer Players," Papers 2311.04599, arXiv.org, revised Nov 2023.
    10. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    11. Alexis Direr, 2013. "Are betting markets efficient? Evidence from European Football Championships," Applied Economics, Taylor & Francis Journals, vol. 45(3), pages 343-356, January.
    12. Carlos Sáenz-Royo, 2017. "A plausible Decision Heuristics Model: Fallibility of human judgment as an endogenous problem," Working Papers 2017/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    13. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    15. Anil Özdemir & Helmut Dietl & Giambattista Rossi & Rob Simmons, 2022. "Are workers rewarded for inconsistent performance?," Industrial Relations: A Journal of Economy and Society, Wiley Blackwell, vol. 61(2), pages 137-151, April.
    16. Leitner, Christoph & Zeileis, Achim & Hornik, Kurt, 2010. "Forecasting sports tournaments by ratings of (prob)abilities: A comparison for the EUROÂ 2008," International Journal of Forecasting, Elsevier, vol. 26(3), pages 471-481, July.
    17. Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
    18. repec:cup:judgdm:v:16:y:2021:i:6:p:1370-1391 is not listed on IDEAS
    19. Li, Yongjun & Wang, Lizheng & Li, Feng, 2021. "A data-driven prediction approach for sports team performance and its application to National Basketball Association," Omega, Elsevier, vol. 98(C).
    20. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
    21. Barajas, Angel & Fernández-Jardón, Carlos & Crolley, Liz, 2005. "Does sports performance influence revenues and economic results in Spanish football?," MPRA Paper 3234, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:3:y:2022:i:3:d:10.1007_s43069-022-00160-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.