A gamma process based in-play prediction model for National Basketball Association games
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2019.11.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
- Tao Chen & Qingliang Fan, 2018. "A functional data approach to model score difference process in professional basketball games," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 112-127, January.
- Siem Jan Koopman & Rutger Lit, 2015.
"A dynamic bivariate Poisson model for analysing and forecasting match results in the English Premier League,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 167-186, January.
- Siem Jan Koopman & Rutger Lit, 2012. "A Dynamic Bivariate Poisson Model for Analysing and Forecasting Match Results in the English Premier League," Tinbergen Institute Discussion Papers 12-099/III, Tinbergen Institute.
- Demers Simon, 2015. "Riding a probabilistic support vector machine to the Stanley Cup," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(4), pages 205-218, December.
- Mark E. Glickman, 1999. "Parameter Estimation in Large Dynamic Paired Comparison Experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 377-394.
- Stekler, H.O. & Sendor, David & Verlander, Richard, 2010.
"Issues in sports forecasting,"
International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
- Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- West Brady T, 2006. "A Simple and Flexible Rating Method for Predicting Success in the NCAA Basketball Tournament," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(3), pages 1-16, July.
- Durán, Guillermo & Durán, Santiago & Marenco, Javier & Mascialino, Federico & Rey, Pablo A., 2019. "Scheduling Argentina’s professional basketball leagues: A variation on the Travelling Tournament Problem," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1126-1138.
- Štrumbelj, Erik & Vračar, Petar, 2012. "Simulating a basketball match with a homogeneous Markov model and forecasting the outcome," International Journal of Forecasting, Elsevier, vol. 28(2), pages 532-542.
- S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
- Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
- Teramoto Masaru & Cross Chad L., 2010. "Relative Importance of Performance Factors in Winning NBA Games in Regular Season versus Playoffs," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-19, July.
- Gabel Alan & Redner Sidney, 2012. "Random Walk Picture of Basketball Scoring," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-20, March.
- Deshpande Sameer K. & Jensen Shane T., 2016. "Estimating an NBA player’s impact on his team’s chances of winning," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(2), pages 51-72, June.
- Baghal Tarek, 2012. "Are the "Four Factors" Indicators of One Factor? An Application of Structural Equation Modeling Methodology to NBA Data in Prediction of Winning Percentage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-17, March.
- Bozóki, Sándor & Csató, László & Temesi, József, 2016. "An application of incomplete pairwise comparison matrices for ranking top tennis players," European Journal of Operational Research, Elsevier, vol. 248(1), pages 211-218.
- van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
- Goddard, John, 2005. "Regression models for forecasting goals and match results in association football," International Journal of Forecasting, Elsevier, vol. 21(2), pages 331-340.
- Cooper, W.W. & Ruiz, José L. & Sirvent, Inmaculada, 2009. "Selecting non-zero weights to evaluate effectiveness of basketball players with DEA," European Journal of Operational Research, Elsevier, vol. 195(2), pages 563-574, June.
- David J. Berri, 1999. "Who is 'most valuable'? Measuring the player's production of wins in the National Basketball Association," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 411-427.
- Müller, Oliver & Simons, Alexander & Weinmann, Markus, 2017. "Beyond crowd judgments: Data-driven estimation of market value in association football," European Journal of Operational Research, Elsevier, vol. 263(2), pages 611-624.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022.
"Monotonicity in sharing the revenues from broadcasting sports leagues,"
European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
- Gustavo Bergantiños & Juan D. Moreno-Ternero, 2021. "Monotonicity in sharing the revenues from broadcasting sports leagues," Working Papers 21.09, Universidad Pablo de Olavide, Department of Economics.
- Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2021. "Monotonicity in sharing the revenues from broadcasting sports leagues," MPRA Paper 105643, University Library of Munich, Germany.
- Wang, Xiaofei & Wang, Bing Xing & Hong, Yili & Jiang, Pei Hua, 2021. "Degradation data analysis based on gamma process with random effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1200-1208.
- Singh, Aaditya & Scarf, Phil & Baker, Rose, 2023. "A unified theory for bivariate scores in possessive ball-sports: The case of handball," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1099-1112.
- Tullio Facchinetti & Rodolfo Metulini & Paola Zuccolotto, 2023. "Filtering active moments in basketball games using data from players tracking systems," Annals of Operations Research, Springer, vol. 325(1), pages 521-538, June.
- Lorig, Matthew & Zhou, Zhou & Zou, Bin, 2021. "Optimal bookmaking," European Journal of Operational Research, Elsevier, vol. 295(2), pages 560-574.
- Collingwood, James A.P. & Wright, Michael & Brooks, Roger J., 2023. "Simulating the progression of a professional snooker frame," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1286-1299.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Song, Kai & Gao, Yiran & Shi, Jian, 2020. "Making real-time predictions for NBA basketball games by combining the historical data and bookmaker’s betting line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Baboota, Rahul & Kaur, Harleen, 2019. "Predictive analysis and modelling football results using machine learning approach for English Premier League," International Journal of Forecasting, Elsevier, vol. 35(2), pages 741-755.
- Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020.
"Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game,"
Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
- Carl Singleton & J. James Reade & Alsdair Brown, 2018. "Going with your Gut: The (In)accuracy of Forecast Revisions in a Football Score Prediction Game," Working Papers 2018-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Carl Singleton & J. James Reade & Alasdair Brown, 2019. "Going with your gut: the (in)accuracy of forecast revisions in a football score prediction game," Economics Discussion Papers em-dp2019-05, Department of Economics, University of Reading, revised 01 Nov 2019.
- Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
- Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
- Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
- Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
- Li, Yongjun & Wang, Lizheng & Li, Feng, 2021. "A data-driven prediction approach for sports team performance and its application to National Basketball Association," Omega, Elsevier, vol. 98(C).
- da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
- Szczecinski Leszek, 2022. "G-Elo: generalization of the Elo algorithm by modeling the discretized margin of victory," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 18(1), pages 1-14, March.
- Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
- Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
- Andrei Shynkevich, 2022. "Informational efficiency of football transfer market," Economics Bulletin, AccessEcon, vol. 42(2), pages 1032-1039.
- Marc Garnica-Caparrós & Daniel Memmert & Fabian Wunderlich, 2022. "Artificial data in sports forecasting: a simulation framework for analysing predictive models in sports," Information Systems and e-Business Management, Springer, vol. 20(3), pages 551-580, September.
- Stekler, H.O. & Sendor, David & Verlander, Richard, 2010.
"Issues in sports forecasting,"
International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
- Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Blaž Krese & Erik Štrumbelj, 2021. "A Bayesian approach to time-varying latent strengths in pairwise comparisons," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
- Groll Andreas & Kneib Thomas & Mayr Andreas & Schauberger Gunther, 2018. "On the dependency of soccer scores – a sparse bivariate Poisson model for the UEFA European football championship 2016," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(2), pages 65-79, June.
- Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
- Wheatcroft, Edward, 2020. "A profitable model for predicting the over/under market in football," International Journal of Forecasting, Elsevier, vol. 36(3), pages 916-932.
- Corona, Francisco & Forrest, David & Tena, J.D. & Wiper, Michael, 2019. "Bayesian forecasting of UEFA Champions League under alternative seeding regimes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 722-732.
More about this item
Keywords
OR in sports; Gamma process; In-play prediction; Bayesian method; Betting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:2:p:706-713. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.