IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v1y2004i3p167-176.html
   My bibliography  Save this article

Multiple Experts vs. Multiple Methods: Combining Correlation Assessments

Author

Listed:
  • Robert L. Winkler

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708-0120)

  • Robert T. Clemen

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708-0120)

Abstract

Averaging forecasts from several experts has been shown to lead to improved forecasting accuracy and reduced risk of bad forecasts. Similarly, it is accepted knowledge in decision analysis that an expert can benefit from using more than one assessment method to look at a situation from different viewpoints. In this paper, we investigate gains in accuracy in assessing correlations by averaging different assessments from a single expert and/or from multiple experts. Adding experts and adding methods can both improve accuracy, with diminishing returns to extra experts or methods. The gains are generally much greater from adding experts than from adding methods, and restricting the set of experts to those who do particularly well individually leads to the greatest improvements in the averaged assessments. The variability of assessment accuracy decreases considerably as the number of experts or methods increases, implying a large risk reduction. We discuss conditions under which the general pattern of results obtained here might be expected to be similar or different in other situations with multiple experts and/or multiple methods.

Suggested Citation

  • Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
  • Handle: RePEc:inm:ordeca:v:1:y:2004:i:3:p:167-176
    DOI: 10.1287/deca.1030.0008
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/deca.1030.0008
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.1030.0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    2. Hogarth, Robin M. (ed.), 1990. "Insights in Decision Making," University of Chicago Press Economics Books, University of Chicago Press, edition 1, number 9780226348551, December.
    3. H. V. Ravinder & Don N. Kleinmuntz & James S. Dyer, 1988. "The Reliability of Subjective Probabilities Obtained Through Decomposition," Management Science, INFORMS, vol. 34(2), pages 186-199, February.
    4. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
    5. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    6. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    7. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    8. Dennis V. Lindley, 1986. "The Reconciliation of Decision Analyses," Operations Research, INFORMS, vol. 34(2), pages 289-295, April.
    9. Dewispelare, Aaron R. & Herren, L. Tandy & Clemen, Robert T., 1995. "The use of probability elicitation in the high-level nuclear waste regulation program," International Journal of Forecasting, Elsevier, vol. 11(1), pages 5-24, March.
    10. Robert T. Clemen & Gregory W. Fischer & Robert L. Winkler, 2000. "Assessing Dependence: Some Experimental Results," Management Science, INFORMS, vol. 46(8), pages 1100-1115, August.
    11. Clemon, Robert T & Winkler, Robert L, 1986. "Combining Economic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 39-46, January.
    12. Robert T. Clemen & Robert L. Winkler, 1985. "Limits for the Precision and Value of Information from Dependent Sources," Operations Research, INFORMS, vol. 33(2), pages 427-442, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    2. Johannes Müller-Trede & Shoham Choshen-Hillel & Meir Barneron & Ilan Yaniv, 2018. "The Wisdom of Crowds in Matters of Taste," Management Science, INFORMS, vol. 64(4), pages 1779-1803, April.
    3. Anil Gaba & Dana G. Popescu & Zhi Chen, 2019. "Assessing Uncertainty from Point Forecasts," Management Science, INFORMS, vol. 65(1), pages 90-106, January.
    4. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    5. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    6. Asa B. Palley & Jack B. Soll, 2019. "Extracting the Wisdom of Crowds When Information Is Shared," Management Science, INFORMS, vol. 67(5), pages 2291-2309, May.
    7. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    8. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    9. P. J. Lamberson & Scott E. Page, 2012. "Optimal Forecasting Groups," Management Science, INFORMS, vol. 58(4), pages 805-810, April.
    10. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    11. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Phillip E. Pfeifer, 2013. "The Wisdom of Competitive Crowds," Operations Research, INFORMS, vol. 61(6), pages 1383-1398, December.
    12. Johannes Müller-Trede & Shoham Choshen-Hillel & Meir Barneron & Ilan Yaniv, 2017. "The Wisdom of Crowds in Matters of Taste," Discussion Paper Series dp709, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    13. Jason R. W. Merrick & J. Rene van Dorp & Amita Singh, 2005. "Analysis of Correlated Expert Judgments from Extended Pairwise Comparisons," Decision Analysis, INFORMS, vol. 2(1), pages 17-29, March.
    14. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    15. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    16. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    17. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    18. Gary J. Summers, 2021. "Friction and Decision Rules in Portfolio Decision Analysis," Decision Analysis, INFORMS, vol. 18(2), pages 101-120, June.
    19. Paola Monari & Patrizia Agati, 2001. "Fiducial inference in combining expert judgements," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 10(1), pages 81-97, January.
    20. Stewart, Thomas R. & Roebber, Paul J. & Bosart, Lance F., 1997. "The Importance of the Task in Analyzing Expert Judgment," Organizational Behavior and Human Decision Processes, Elsevier, vol. 69(3), pages 205-219, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:1:y:2004:i:3:p:167-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.