Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1021220818545
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
- Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
- M.L. Kleptsyna & A. Le Breton & M.-C. Roubaud, 2000. "Parameter Estimation and Optimal Filtering for Fractional Type Stochastic Systems," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 173-182, January.
- Alain Breton & Dinh Pham, 1989. "On the bias of the least squares estimator for the first order autoregressive process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(3), pages 555-563, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
- Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
- Hui Jiang & Jingying Zhou, 2023. "An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1037-1058, June.
- Xichao Sun & Litan Yan & Yong Ge, 2022. "The Laws of Large Numbers Associated with the Linear Self-attracting Diffusion Driven by Fractional Brownian Motion and Applications," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1423-1478, September.
- Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
- Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
- Mishura, Yuliya, 2014. "Standard maximum likelihood drift parameter estimator in the homogeneous diffusion model is always strongly consistent," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 24-29.
- Cai, Chunhao & Lv, Wujun, 2020. "Adaptative design for estimation of parameter of second order differential equation in fractional diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
- Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
- Bertin, Karine & Torres, Soledad & Tudor, Ciprian A., 2011. "Drift parameter estimation in fractional diffusions driven by perturbed random walks," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 243-249, February.
- Douissi, Soukaina & Es-Sebaiy, Khalifa & Alshahrani, Fatimah & Viens, Frederi G., 2022. "AR(1) processes driven by second-chaos white noise: Berry–Esséen bounds for quadratic variation and parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 886-918.
- Bishwal, Jaya P.N., 2008. "Large deviations in testing fractional Ornstein-Uhlenbeck models," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 953-962, June.
- Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
- Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
- Dai, Min & Duan, Jinqiao & Liao, Junjun & Wang, Xiangjun, 2021. "Maximum likelihood estimation of stochastic differential equations with random effects driven by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 397(C).
- Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
- Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hult, Henrik, 2003. "Approximating some Volterra type stochastic integrals with applications to parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 1-32, May.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Kanaya, Shin & Kristensen, Dennis, 2016.
"Estimation Of Stochastic Volatility Models By Nonparametric Filtering,"
Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
- Shin Kanaya & Dennis Kristensen, 2010. "Estimation of Stochastic Volatility Models by Nonparametric Filtering," CREATES Research Papers 2010-67, Department of Economics and Business Economics, Aarhus University.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers 09/15, Institute for Fiscal Studies.
- Shin Kanaya & Dennis Kristensen, 2015. "Estimation of stochastic volatility models by nonparametric filtering," CeMMAP working papers CWP09/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Manabu Asai & Michael McAleer, 2017.
"A fractionally integrated Wishart stochastic volatility model,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Documentos de Trabajo del ICAE 2013-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," KIER Working Papers 848, Kyoto University, Institute of Economic Research.
- Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
- Jia Li & Dacheng Xiu, 2016.
"Generalized Method of Integrated Moments for High‐Frequency Data,"
Econometrica, Econometric Society, vol. 84, pages 1613-1633, July.
- Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84(4), pages 1613-1633, July.
- Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
- Inoua, Sabiou M. & Smith, Vernon L., 2023.
"A classical model of speculative asset price dynamics,"
Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
- Sabiou M. Inoua & Vernon L. Smith, 2021. "A Classical Model of Speculative Asset Price Dynamics," Working Papers 21-21, Chapman University, Economic Science Institute.
- Sabiou Inoua & Vernon Smith, 2023. "A Classical Model of Speculative Asset Price Dynamics," Papers 2307.00410, arXiv.org.
- Fabienne Comte & Valentine Genon-Catalot, 2021. "Nonparametric estimation for i.i.d. Gaussian continuous time moving average models," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 149-177, April.
- Casas, Isabel & Gao, Jiti, 2008.
"Econometric estimation in long-range dependent volatility models: Theory and practice,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
- Casas, Isabel & Gao, Jiti, 2006. "Econometric estimation in long-range dependent volatility models: Theory and practice," MPRA Paper 11981, University Library of Munich, Germany, revised Aug 2007.
- Eduardo Rossi & Paolo Santucci de Magistris, 2014.
"Estimation of Long Memory in Integrated Variance,"
Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
- Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Estimation of long memory in integrated variance," CREATES Research Papers 2011-11, Department of Economics and Business Economics, Aarhus University.
- Eduardo Rossi & Paolo Santucci de Magistris, 2012. "Estimation of long memory in integrated variance," DEM Working Papers Series 017, University of Pavia, Department of Economics and Management.
- N. N. Leonenko & Emanuele Taufer, 2001. "Asymptotic properties of LSE in multivariate continuous regression with long memory stationary errors," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 54-71.
- Susanne M. Schennach, 2018.
"Long Memory via Networking,"
Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
- Susanne M. Schennach, 2013. "Long memory via networking," CeMMAP working papers CWP13/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susanne M. Schennach, 2013. "Long memory via networking," CeMMAP working papers 13/13, Institute for Fiscal Studies.
- Susanne M. Schennach, 2018. "Long memory via networking," CeMMAP working papers CWP49/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
- Federico M. Bandi & Benoit Perron, 2006.
"Long Memory and the Relation Between Implied and Realized Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 636-670.
- Federico Bandi & Benoit Perron, 2003. "Long memory and the relation between implied and realized volatility," Econometrics 0305004, University Library of Munich, Germany.
- Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
- F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.
- Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
- Leonenko, Nikolai N. & Sharapov, Michail M. & El-Bassiouny, Ahmed H., 2000. "On the exactness of normal approximation of LSE of regression coefficient of long-memory random fields," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 121-130, June.
- Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022.
"Weak Identification of Long Memory with Implications for Inference,"
Economics and Statistics Working Papers
8-2022, Singapore Management University, School of Economics.
- Jia Li & Peter C. B. Phillips & Shuping Shi & Jun Yu, 2022. "Weak Identification of Long Memory with Implications for Inference," Cowles Foundation Discussion Papers 2334, Cowles Foundation for Research in Economics, Yale University.
More about this item
Keywords
fractional Brownian motion; maximum likelihood estimator; bias; mean square error;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:5:y:2002:i:3:p:229-248. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.