IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v36y2014icp198-203.html
   My bibliography  Save this article

Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation

Author

Listed:
  • Zhang, Pu
  • Xiao, Wei-lin
  • Zhang, Xi-li
  • Niu, Pan-qiang

Abstract

Fractional Ornstein–Uhlenbeck process is an extended model of the traditional Ornstein–Uhlenbeck process that provides some useful models for many physical and financial phenomena demonstrating long-range dependencies. Obviously, if some phenomenon can be modeled by fractional Ornstein–Uhlenbeck processes, the problem of estimating unknown parameters in these models is of great interest, especially, in discrete time. This paper deals with the problem of estimating the unknown parameters in fractional Ornstein–Uhlenbeck processes. The estimation procedure is built upon the marriage of the quadratic variation method and the maximum likelihood approach. The consistency of these estimators is also provided. Simulation outcomes illustrate that our methodology is efficient and reliable.

Suggested Citation

  • Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
  • Handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:198-203
    DOI: 10.1016/j.econmod.2013.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313003635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2013.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    2. Bishwal, J. P. N., 1999. "Large deviations inequalities for the maximum likelihood estimator and the Bayes estimators in nonlinear stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 207-215, June.
    3. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    4. Bishwal, Jaya P.N., 2008. "Large deviations in testing fractional Ornstein-Uhlenbeck models," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 953-962, June.
    5. M.L. Kleptsyna & A. Le Breton, 2002. "Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 229-248, October.
    6. Alexandra Chronopoulou & Samy Tindel, 2013. "On inference for fractional differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 29-61, April.
    7. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    8. Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.
    9. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    2. Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
    3. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    4. Bertin, Karine & Torres, Soledad & Tudor, Ciprian A., 2011. "Drift parameter estimation in fractional diffusions driven by perturbed random walks," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 243-249, February.
    5. Hui Jiang & Jingying Zhou, 2023. "An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1037-1058, June.
    6. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    7. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
    9. Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
    10. Douissi, Soukaina & Es-Sebaiy, Khalifa & Alshahrani, Fatimah & Viens, Frederi G., 2022. "AR(1) processes driven by second-chaos white noise: Berry–Esséen bounds for quadratic variation and parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 886-918.
    11. Fernandes, Mário Correia & Dias, José Carlos & Nunes, João Pedro Vidal, 2021. "Modeling energy prices under energy transition: A novel stochastic-copula approach," Economic Modelling, Elsevier, vol. 105(C).
    12. Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.
    13. Xichao Sun & Litan Yan & Yong Ge, 2022. "The Laws of Large Numbers Associated with the Linear Self-attracting Diffusion Driven by Fractional Brownian Motion and Applications," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1423-1478, September.
    14. Garzón, J. & Gorostiza, L.G. & León, J.A., 2009. "A strong uniform approximation of fractional Brownian motion by means of transport processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3435-3452, October.
    15. Matthieu Garcin, 2019. "Estimation of Hurst exponents in a stationary framework [Estimation d'exposants de Hurst dans un cadre stationnaire]," Post-Print hal-02163662, HAL.
    16. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    17. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    18. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    19. Inoue, Akihiko & Nakano, Yumiharu & Anh, Vo, 2007. "Binary market models with memory," Statistics & Probability Letters, Elsevier, vol. 77(3), pages 256-264, February.
    20. Mark Trede & Bernd Wilfling, 2007. "Estimating exchange rate dynamics with diffusion processes: an application to Greek EMU data," Empirical Economics, Springer, vol. 33(1), pages 23-39, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:198-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.