IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v105y2003i1p1-32.html
   My bibliography  Save this article

Approximating some Volterra type stochastic integrals with applications to parameter estimation

Author

Listed:
  • Hult, Henrik

Abstract

We consider Volterra type processes which are Gaussian processes admitting representation as a Volterra type stochastic integral with respect to the standard Brownian motion, for instance the fractional Brownian motion. Gaussian processes can be represented as a limit of a sequence of processes in the associated reproducing kernel Hilbert space and as a special case of this representation, we derive Karhunen-Loéve expansions for Volterra type processes. In particular, a wavelet decomposition for the fractional Brownian motion is obtained. We also consider a Skorohod type stochastic integral with respect to a Volterra type process and using the Karhunen-Loéve expansions we show how it can be approximated. Finally, we apply the results to estimation of drift parameters in stochastic models driven by Volterra type processes using a Girsanov transformation and we prove consistency, the rate of convergence and asymptotic normality of the derived maximum likelihood estimators.

Suggested Citation

  • Hult, Henrik, 2003. "Approximating some Volterra type stochastic integrals with applications to parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 105(1), pages 1-32, May.
  • Handle: RePEc:eee:spapps:v:105:y:2003:i:1:p:1-32
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00250-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:crs:wpaper:9607 is not listed on IDEAS
    2. F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
    3. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    4. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    5. M.L. Kleptsyna & A. Le Breton & M.-C. Roubaud, 2000. "Parameter Estimation and Optimal Filtering for Fractional Type Stochastic Systems," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 173-182, January.
    6. Philippe Carmona & Laure Coutin & G. Montseny, 2000. "Approximation of Some Gaussian Processes," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 161-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Gerhold & Christoph Gerstenecker & Archil Gulisashvili, 2020. "Large deviations for fractional volatility models with non-Gaussian volatility driver," Papers 2003.12825, arXiv.org.
    2. Saussereau, Bruno & Stoica, Ion Lucretiu, 2012. "Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1456-1486.
    3. Gerhold, Stefan & Gerstenecker, Christoph & Gulisashvili, Archil, 2021. "Large deviations for fractional volatility models with non-Gaussian volatility driver," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 580-600.
    4. Miriana Cellupica & Barbara Pacchiarotti, 2021. "Pathwise Asymptotics for Volterra Type Stochastic Volatility Models," Journal of Theoretical Probability, Springer, vol. 34(2), pages 682-727, June.
    5. Čoupek, P. & Maslowski, B., 2017. "Stochastic evolution equations with Volterra noise," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 877-900.
    6. Archil Gulisashvili, 2018. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Papers 1808.00421, arXiv.org, revised Jun 2019.
    7. Dzhaparidze, Kacha & van Zanten, Harry & Zareba, Pawel, 2005. "Representations of fractional Brownian motion using vibrating strings," Stochastic Processes and their Applications, Elsevier, vol. 115(12), pages 1928-1953, December.
    8. Gulisashvili, Archil, 2020. "Gaussian stochastic volatility models: Scaling regimes, large deviations, and moment explosions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3648-3686.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    2. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    3. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    4. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    5. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    6. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    7. M.L. Kleptsyna & A. Le Breton, 2002. "Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 229-248, October.
    8. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    9. Susanne M. Schennach, 2018. "Long Memory via Networking," Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
    10. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    11. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    12. Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    13. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Sep 2023.
    14. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
    15. Fred Espen Benth & Asma Khedher & Michèle Vanmaele, 2020. "Pricing of Commodity Derivatives on Processes with Memory," Risks, MDPI, vol. 8(1), pages 1-32, January.
    16. Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84, pages 1613-1633, July.
    17. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    18. Fabienne Comte & Valentine Genon-Catalot, 2021. "Nonparametric estimation for i.i.d. Gaussian continuous time moving average models," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 149-177, April.
    19. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    20. F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:105:y:2003:i:1:p:1-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.