IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i8p953-962.html
   My bibliography  Save this article

Large deviations in testing fractional Ornstein-Uhlenbeck models

Author

Listed:
  • Bishwal, Jaya P.N.

Abstract

The paper obtains the explicit form of fine large deviation theorems for the log-likelihood ratio in testing models with fractional Ornstein-Uhlenbeck processes with Hurst parameter bigger than half and obtains the explicit rates of decrease of the error probabilities of Neyman-Pearson, Bayes and minimax tests.

Suggested Citation

  • Bishwal, Jaya P.N., 2008. "Large deviations in testing fractional Ornstein-Uhlenbeck models," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 953-962, June.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:8:p:953-962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00347-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Espen Benth, 2003. "On arbitrage-free pricing of weather derivatives based on fractional Brownian motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(4), pages 303-324.
    2. M.L. Kleptsyna & A. Le Breton, 2002. "Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 229-248, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shoujiang & Zhou, Yanping, 2013. "Sharp large deviations for the log-likelihood ratio of an α-Brownian bridge," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2750-2758.
    2. Zhao, Shoujiang & Gao, Fuqing, 2010. "Large deviations in testing Jacobi model," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 34-41, January.
    3. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    2. Mishura, Yuliya, 2014. "Standard maximum likelihood drift parameter estimator in the homogeneous diffusion model is always strongly consistent," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 24-29.
    3. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    4. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    5. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
    6. Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
    7. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    8. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    9. Bertin, Karine & Torres, Soledad & Tudor, Ciprian A., 2011. "Drift parameter estimation in fractional diffusions driven by perturbed random walks," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 243-249, February.
    10. Hainaut, Donatien, 2019. "Hedging of crop harvest with derivatives on temperature," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 98-114.
    11. Hainaut, Donatien, 2018. "Hedging of crop harvest with derivatives on temperature," LIDAM Discussion Papers ISBA 2018012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Rosella Castellano & Roy Cerqueti & Giulia Rotundo, 2020. "Exploring the financial risk of a temperature index: a fractional integrated approach," Annals of Operations Research, Springer, vol. 284(1), pages 225-242, January.
    13. Hui Jiang & Jingying Zhou, 2023. "An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1037-1058, June.
    14. repec:hum:wpaper:sfb649dp2009-001 is not listed on IDEAS
    15. Peter Kloeden & Andreas Neuenkirch & Raffaella Pavani, 2011. "Multilevel Monte Carlo for stochastic differential equations with additive fractional noise," Annals of Operations Research, Springer, vol. 189(1), pages 255-276, September.
    16. Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
    17. Sun, Qi & Xu, Weijun & Xiao, Weilin, 2013. "An empirical estimation for mean-reverting coal prices with long memory," Economic Modelling, Elsevier, vol. 33(C), pages 174-181.
    18. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2007. "Putting a Price on Temperature," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 746-767, December.
    19. Zura Kakushadze & Juan Andrés Serur, 2018. "151 Trading Strategies," Springer Books, Springer, number 978-3-030-02792-6, December.
    20. Esben Hoeg & Per Frederiksen, 2006. "The Fractional OU Process: Term Structure Theory and Application," Computing in Economics and Finance 2006 194, Society for Computational Economics.
    21. Høg, Esben & Frederiksen, Per & Schiemert, Daniel, 2008. "On the Generalized Brownian Motion and its Applications in Finance," Finance Research Group Working Papers F-2008-07, University of Aarhus, Aarhus School of Business, Department of Business Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:8:p:953-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.