IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v23y2020i2d10.1007_s11203-020-09218-0.html
   My bibliography  Save this article

Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion

Author

Listed:
  • Karine Bertin

    (Universidad de Valparaiso)

  • Nicolas Klutchnikoff

    (Univ Rennes, CNRS, IRMAR – UMR 6625)

  • Fabien Panloup

    (Université d’Angers, CNRS)

  • Maylis Varvenne

    (Université de Toulouse 1 Capitole, 2 Rue du Doyen-Gabriel-Marty)

Abstract

We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.

Suggested Citation

  • Karine Bertin & Nicolas Klutchnikoff & Fabien Panloup & Maylis Varvenne, 2020. "Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 271-300, July.
  • Handle: RePEc:spr:sistpr:v:23:y:2020:i:2:d:10.1007_s11203-020-09218-0
    DOI: 10.1007/s11203-020-09218-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-020-09218-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-020-09218-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Mishra & B. Prakasa Rao, 2011. "Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 101-109, May.
    2. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    3. Yu. Kutoyants, 1998. "Efficient Density Estimation for Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 1(2), pages 131-155, May.
    4. Comte, F. & Merlevède, F., 2005. "Super optimal rates for nonparametric density estimation via projection estimators," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 797-826, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie, Nicolas, 2022. "Projection estimators of the stationary density of a differential equation driven by the fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalalyan Arnak S. & Kutoyants Yury A., 2004. "On second order minimax estimation of invariant density for ergodic diffusion," Statistics & Risk Modeling, De Gruyter, vol. 22(1), pages 17-42, January.
    2. Negri, Ilia, 2001. "On efficient estimation of invariant density for ergodic diffusion processes," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 79-85, January.
    3. Comte, F. & Merlevède, F., 2005. "Super optimal rates for nonparametric density estimation via projection estimators," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 797-826, May.
    4. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    5. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    6. Zhang, Xuekang & Yi, Haoran & Shu, Huisheng, 2019. "Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 8-16.
    7. Oberhofer, Walter & Haupt, Harry, 2005. "The asymptotic distribution of the unconditional quantile estimator under dependence," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 243-250, July.
    8. Robinson, Peter M. & Thawornkaiwong, Supachoke, 2012. "Statistical inference on regression with spatial dependence," Journal of Econometrics, Elsevier, vol. 167(2), pages 521-542.
    9. Guillou, Armelle & Merlevède, Florence, 2001. "Estimation of the Asymptotic Variance of Kernel Density Estimators for Continuous Time Processes," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 114-137, October.
    10. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    11. Natalia Markovich & Jorma Kilpi, 2009. "Bivariate statistical analysis of TCP-flow sizes and durations," Annals of Operations Research, Springer, vol. 170(1), pages 199-216, September.
    12. Mielniczuk, Jan, 1997. "On the asymptotic mean integrated squared error of a kernel density estimator for dependent data," Statistics & Probability Letters, Elsevier, vol. 34(1), pages 53-58, May.
    13. Blanke, D. & Bosq, D., 1997. "Accurate rates of density estimators for continuous-time processes," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 185-191, April.
    14. Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
    15. Kutoyants, Yu. A., 1997. "Some problems of nonparametric estimation by observations of ergodic diffusion process," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 311-320, March.
    16. Fabienne Comte & Nicolas Marie, 2019. "Nonparametric estimation in fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 359-382, October.
    17. J. van Zanten, 2000. "On the Uniform Convergence of the Empirical Density of an Ergodic Diffusion," Statistical Inference for Stochastic Processes, Springer, vol. 3(3), pages 251-262, October.
    18. Sköld, Martin & Hössjer, Ola, 1999. "On the asymptotic variance of the continuous-time kernel density estimator," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 97-106, August.
    19. Antoine Lejay & Paolo Pigato, 2020. "Maximum likelihood drift estimation for a threshold diffusion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 609-637, September.
    20. Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:23:y:2020:i:2:d:10.1007_s11203-020-09218-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.