IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v180y2022ics0167715221002066.html
   My bibliography  Save this article

Projection estimators of the stationary density of a differential equation driven by the fractional Brownian motion

Author

Listed:
  • Marie, Nicolas

Abstract

The paper deals with projection estimators of the density of the stationary solution X to a differential equation driven by the fractional Brownian motion under a dissipativity condition on the drift function. A model selection method is provided and, thanks to the concentration inequality for Lipschitz functionals of discrete samples of X proved in Bertin et al. (2020), an oracle inequality is established for the adaptive estimator.

Suggested Citation

  • Marie, Nicolas, 2022. "Projection estimators of the stationary density of a differential equation driven by the fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002066
    DOI: 10.1016/j.spl.2021.109244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221002066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Neuenkirch & Samy Tindel, 2014. "A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 99-120, April.
    2. Claire Lacour & Pascal Massart & Vincent Rivoirard, 2017. "Estimator Selection: a New Method with Applications to Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 298-335, August.
    3. Karine Bertin & Nicolas Klutchnikoff & Fabien Panloup & Maylis Varvenne, 2020. "Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 271-300, July.
    4. Fabienne Comte & Nicolas Marie, 2019. "Nonparametric estimation in fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 359-382, October.
    5. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    2. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
    4. Fabienne Comte & Nicolas Marie, 2021. "Nonparametric estimation for I.I.D. paths of fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 669-705, October.
    5. Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
    6. Matthieu Garcin, 2019. "Estimation of Hurst exponents in a stationary framework [Estimation d'exposants de Hurst dans un cadre stationnaire]," Post-Print hal-02163662, HAL.
    7. Van Ha Hoang & Thanh Mai Pham Ngoc & Vincent Rivoirard & Viet Chi Tran, 2022. "Nonparametric estimation of the fragmentation kernel based on a partial differential equation stationary distribution approximation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 4-43, March.
    8. Shi, Shuping & Yu, Jun & Zhang, Chen, 2024. "On the spectral density of fractional Ornstein–Uhlenbeck processes," Journal of Econometrics, Elsevier, vol. 245(1).
    9. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Comte, Fabienne & Marie, Nicolas, 2023. "Nonparametric drift estimation from diffusions with correlated Brownian motions," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    11. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    12. Katsuto Tanaka, 2013. "Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 173-192, October.
    13. Ammous, Sinda & Dedecker, Jérôme & Duval, Céline, 2024. "Adaptive directional estimator of the density in Rd for independent and mixing sequences," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    14. Qian Yu, 2021. "Least squares estimator of fractional Ornstein–Uhlenbeck processes with periodic mean for general Hurst parameter," Statistical Papers, Springer, vol. 62(2), pages 795-815, April.
    15. Ranieri Dugo & Giacomo Giorgio & Paolo Pigato, 2024. "The Multivariate Fractional Ornstein-Uhlenbeck Process," CEIS Research Paper 581, Tor Vergata University, CEIS, revised 28 Aug 2024.
    16. Pavel Kříž & Leszek Szała, 2020. "Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein–Uhlenbeck Processes," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    17. Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
    18. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
    19. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    20. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.