IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v34y1997i1p53-58.html
   My bibliography  Save this article

On the asymptotic mean integrated squared error of a kernel density estimator for dependent data

Author

Listed:
  • Mielniczuk, Jan

Abstract

Hall and Hart (1990) proved that the mean integrated squared error (MISE) of a marginal kernel density estimator from an infinite moving average process X1, X2, ... may be decomposed into the sum of MISE of the same kernel estimator for a random sample of the same size and a term proportional to the variance of the sample mean. Extending this, we show here that the phenomenon is rather general: the same result continues to hold if dependence is quantified in terms of the behaviour of a remainder term in a natural decomposition of the densities of (X1, X1+i), I = 1, 2, ....

Suggested Citation

  • Mielniczuk, Jan, 1997. "On the asymptotic mean integrated squared error of a kernel density estimator for dependent data," Statistics & Probability Letters, Elsevier, vol. 34(1), pages 53-58, May.
  • Handle: RePEc:eee:stapro:v:34:y:1997:i:1:p:53-58
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(96)00165-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandr Beknazaryan & Hailin Sang & Peter Adamic, 2023. "On the integrated mean squared error of wavelet density estimation for linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 235-254, July.
    2. Vilar, José A. & Vilar, Juan M., 2000. "Finite sample performance of density estimators from unequally spaced data," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 63-73, October.
    3. Ould Haye, Mohamedou & Philippe, Anne, 2011. "Marginal density estimation for linear processes with cyclical long memory," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1354-1364, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalalyan Arnak S. & Kutoyants Yury A., 2004. "On second order minimax estimation of invariant density for ergodic diffusion," Statistics & Risk Modeling, De Gruyter, vol. 22(1), pages 17-42, January.
    2. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    3. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    4. Oberhofer, Walter & Haupt, Harry, 2005. "The asymptotic distribution of the unconditional quantile estimator under dependence," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 243-250, July.
    5. Robinson, Peter M. & Thawornkaiwong, Supachoke, 2012. "Statistical inference on regression with spatial dependence," Journal of Econometrics, Elsevier, vol. 167(2), pages 521-542.
    6. Guillou, Armelle & Merlevède, Florence, 2001. "Estimation of the Asymptotic Variance of Kernel Density Estimators for Continuous Time Processes," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 114-137, October.
    7. Natalia Markovich & Jorma Kilpi, 2009. "Bivariate statistical analysis of TCP-flow sizes and durations," Annals of Operations Research, Springer, vol. 170(1), pages 199-216, September.
    8. Negri, Ilia, 2001. "On efficient estimation of invariant density for ergodic diffusion processes," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 79-85, January.
    9. Blanke, D. & Bosq, D., 1997. "Accurate rates of density estimators for continuous-time processes," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 185-191, April.
    10. Wang, Yizao & Woodroofe, Michael, 2014. "On the asymptotic normality of kernel density estimators for causal linear random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 201-213.
    11. Kutoyants, Yu. A., 1997. "Some problems of nonparametric estimation by observations of ergodic diffusion process," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 311-320, March.
    12. Sköld, Martin & Hössjer, Ola, 1999. "On the asymptotic variance of the continuous-time kernel density estimator," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 97-106, August.
    13. Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    14. Karine Bertin & Nicolas Klutchnikoff & Fabien Panloup & Maylis Varvenne, 2020. "Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 271-300, July.
    15. Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
    16. Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
    17. Didi Sultana & Louani Djamal, 2014. "Asymptotic results for the regression function estimate on continuous time stationary and ergodic data," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 129-150, June.
    18. Cheng, Yu-Hsiang & Huang, Tzee-Ming, 2012. "A conditional independence test for dependent data based on maximal conditional correlation," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 210-226.
    19. Zhan-Qian Lu, 1999. "Multivariate Local Polynomial Fitting for Martingale Nonlinear Regression Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(4), pages 691-706, December.
    20. Didi, Sultana & Louani, Djamal, 2013. "Consistency results for the kernel density estimate on continuous time stationary and dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1262-1270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:34:y:1997:i:1:p:53-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.