IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v51y2001i1p79-85.html
   My bibliography  Save this article

On efficient estimation of invariant density for ergodic diffusion processes

Author

Listed:
  • Negri, Ilia

Abstract

The problem of nonparametric invariant density function estimation of an ergodic diffusion process is considered. The local asymptotic minimax lower bound on the risk of all the estimators is established. The asymptotic risk considered measures the distance between the estimators and the density that has to be estimate in a functional space endowed with the supremum norm. The local time estimator is asymptotically efficient in the sense of this lower bound.

Suggested Citation

  • Negri, Ilia, 2001. "On efficient estimation of invariant density for ergodic diffusion processes," Statistics & Probability Letters, Elsevier, vol. 51(1), pages 79-85, January.
  • Handle: RePEc:eee:stapro:v:51:y:2001:i:1:p:79-85
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00147-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilia Negri, 1998. "Stationary Distribution Function Estimation for Ergodic Diffusion Process," Statistical Inference for Stochastic Processes, Springer, vol. 1(1), pages 61-84, January.
    2. Castellana, J. V. & Leadbetter, M. R., 1986. "On smoothed probability density estimation for stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 179-193, February.
    3. Yu. Kutoyants, 1998. "Efficient Density Estimation for Ergodic Diffusion Processes," Statistical Inference for Stochastic Processes, Springer, vol. 1(2), pages 131-155, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoichi Nishiyama, 2011. "Estimation for the invariant law of an ergodic diffusion process based on high-frequency data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 909-915.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalalyan Arnak S. & Kutoyants Yury A., 2004. "On second order minimax estimation of invariant density for ergodic diffusion," Statistics & Risk Modeling, De Gruyter, vol. 22(1), pages 17-42, January.
    2. Comte, F. & Merlevède, F., 2005. "Super optimal rates for nonparametric density estimation via projection estimators," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 797-826, May.
    3. Karine Bertin & Nicolas Klutchnikoff & Fabien Panloup & Maylis Varvenne, 2020. "Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 271-300, July.
    4. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    5. Llop, P. & Forzani, L. & Fraiman, R., 2011. "On local times, density estimation and supervised classification from functional data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 73-86, January.
    6. Labrador, Boris, 2008. "Strong pointwise consistency of the kT -occupation time density estimator," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1128-1137, July.
    7. Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
    8. Didi Sultana & Louani Djamal, 2014. "Asymptotic results for the regression function estimate on continuous time stationary and ergodic data," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 129-150, June.
    9. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    10. Cheng, Yu-Hsiang & Huang, Tzee-Ming, 2012. "A conditional independence test for dependent data based on maximal conditional correlation," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 210-226.
    11. Ilia Negri & Yoichi Nishiyama, 2009. "Goodness of fit test for ergodic diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 919-928, December.
    12. Oberhofer, Walter & Haupt, Harry, 2005. "The asymptotic distribution of the unconditional quantile estimator under dependence," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 243-250, July.
    13. Zhan-Qian Lu, 1999. "Multivariate Local Polynomial Fitting for Martingale Nonlinear Regression Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(4), pages 691-706, December.
    14. Didi, Sultana & Louani, Djamal, 2013. "Consistency results for the kernel density estimate on continuous time stationary and dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1262-1270.
    15. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    16. Boris Labrador, 2009. "Rates of strong uniform convergence of the k T -occupation time density estimator," Statistical Inference for Stochastic Processes, Springer, vol. 12(3), pages 269-283, October.
    17. Ilia Negri & Yoichi Nishiyama, 2010. "Review on Goodness of Fit Tests for Ergodic Diffusion Processes by Different Sampling Schemes," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 91-106, February.
    18. Robinson, Peter M. & Thawornkaiwong, Supachoke, 2012. "Statistical inference on regression with spatial dependence," Journal of Econometrics, Elsevier, vol. 167(2), pages 521-542.
    19. Masry, Elias & Mielniczuk, Jan, 1999. "Local linear regression estimation for time series with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 173-193, August.
    20. Ilia Negri & Li Zhou, 2014. "On goodness-of-fit testing for ergodic diffusion process with shift parameter," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 51-73, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:51:y:2001:i:1:p:79-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.