IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v22y2019i3d10.1007_s11203-019-09196-y.html
   My bibliography  Save this article

Nonparametric estimation in fractional SDE

Author

Listed:
  • Fabienne Comte

    (Université Paris Descartes)

  • Nicolas Marie

    (Université Paris Nanterre
    ESME Sudria)

Abstract

This paper deals with the consistency and a rate of convergence for a Nadaraya–Watson estimator of the drift function of a stochastic differential equation driven by an additive fractional noise. The results of this paper are obtained via both some long-time behavior properties of Hairer and some properties of the Skorokhod integral with respect to the fractional Brownian motion. These results are illustrated on the fractional Ornstein–Uhlenbeck process.

Suggested Citation

  • Fabienne Comte & Nicolas Marie, 2019. "Nonparametric estimation in fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 359-382, October.
  • Handle: RePEc:spr:sistpr:v:22:y:2019:i:3:d:10.1007_s11203-019-09196-y
    DOI: 10.1007/s11203-019-09196-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-019-09196-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-019-09196-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Neuenkirch & Samy Tindel, 2014. "A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 99-120, April.
    2. Alexandra Chronopoulou & Samy Tindel, 2013. "On inference for fractional differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 29-61, April.
    3. M. Mishra & B. Prakasa Rao, 2011. "Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 101-109, May.
    4. Kubilius, K. & Skorniakov, V., 2016. "On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 159-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    2. Fabienne Comte & Nicolas Marie, 2021. "Nonparametric estimation for I.I.D. paths of fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 669-705, October.
    3. Marie, Nicolas, 2022. "Projection estimators of the stationary density of a differential equation driven by the fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    2. Fabienne Comte & Nicolas Marie, 2021. "Nonparametric estimation for I.I.D. paths of fractional SDE," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 669-705, October.
    3. Liu, Yanghui & Nualart, Eulalia & Tindel, Samy, 2019. "LAN property for stochastic differential equations with additive fractional noise and continuous time observation," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2880-2902.
    4. Kęstutis Kubilius & Aidas Medžiūnas, 2020. "Positive Solutions of the Fractional SDEs with Non-Lipschitz Diffusion Coefficient," Mathematics, MDPI, vol. 9(1), pages 1-14, December.
    5. Pavel Kříž & Leszek Szała, 2020. "Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein–Uhlenbeck Processes," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    6. Zhang, Pu & Xiao, Wei-lin & Zhang, Xi-li & Niu, Pan-qiang, 2014. "Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation," Economic Modelling, Elsevier, vol. 36(C), pages 198-203.
    7. Zhang, Xuekang & Yi, Haoran & Shu, Huisheng, 2019. "Nonparametric estimation of the trend for stochastic differential equations driven by small α-stable noises," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 8-16.
    8. Yamada, Toshihiro, 2015. "A formula of small time expansion for Young SDE driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 64-72.
    9. Kohei Chiba, 2020. "An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 319-353, July.
    10. Nakajima, Shohei & Shimizu, Yasutaka, 2022. "Asymptotic normality of least squares type estimators to stochastic differential equations driven by fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 187(C).
    11. Xu, Xiao & Wang, Li & Du, Zhenbin & Kao, Yonggui, 2023. "H∞ Sampled-Data Control for Uncertain Fuzzy Systems under Markovian Jump and FBm," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    12. Kubilius, K., 2020. "CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index," Statistics & Probability Letters, Elsevier, vol. 165(C).
    13. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Xuekang Zhang & Shounian Deng & Weiyin Fei, 2023. "Nonparametric Estimation of Trend for Stochastic Processes Driven by G-Brownian Motion with Small Noise," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
    15. Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
    16. Marie, Nicolas, 2022. "Projection estimators of the stationary density of a differential equation driven by the fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 180(C).
    17. Karine Bertin & Nicolas Klutchnikoff & Fabien Panloup & Maylis Varvenne, 2020. "Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 271-300, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:22:y:2019:i:3:d:10.1007_s11203-019-09196-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.