IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v177y2020ics0047259x19303239.html
   My bibliography  Save this article

Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility

Author

Listed:
  • Karamikabir, Hamid
  • Afshari, Mahmoud

Abstract

One of the most important subject in multivariate analysis is parameters estimation. Among different methods, the shrinkage estimation is of interest. In this paper we consider the generalized Bayes shrinkage estimator of location parameter for spherical distribution under balance-type loss. We assume that the random vector having a spherical symmetric distribution with the known scalar variational component. Also, we find minimax and admissible estimator of location parameter based on generalized Bayes estimator. We investigate wavelet generalized Bayes estimator of location under balance-LINEX loss function. At the end, the performance evaluation of the proposed class of estimators is checked through a simulation study.

Suggested Citation

  • Karamikabir, Hamid & Afshari, Mahmoud, 2020. "Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:jmvana:v:177:y:2020:i:c:s0047259x19303239
    DOI: 10.1016/j.jmva.2019.104583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19303239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jafari Jozani, Mohammad & Marchand, Éric & Parsian, Ahmad, 2006. "On estimation with weighted balanced-type loss function," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 773-780, April.
    2. Torehzadeh, S. & Arashi, M., 2014. "A note on shrinkage wavelet estimation in Bayesian analysis," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 231-234.
    3. Cao, Ming-Xiang & He, Dao-Jiang, 2017. "Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 246-254.
    4. Shokofeh Zinodiny & Sadegh Rezaei & Saralees Nadarajah, 2017. "Minimax Estimation of the Mean Matrix of the Matrix Variate Normal Distribution under the Divergence Loss Function," Statistica, Department of Statistics, University of Bologna, vol. 77(4), pages 369-384.
    5. Srivastava, M.S. & Ehsanes Saleh, A.K.Md., 2005. "Estimation of the mean vector of a multivariate normal distribution: subspace hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 55-72, September.
    6. Marchand, Éric & Strawderman, William E., 2020. "On shrinkage estimation for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    7. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2015. "Estimation of the mean vector in a singular multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 245-258.
    8. Dominique Fourdrinier & William Strawderman, 2015. "Robust minimax Stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(4), pages 461-484, May.
    9. M. Afshari & F. Lak & B. Gholizadeh, 2017. "A new Bayesian wavelet thresholding estimator of nonparametric regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 649-666, March.
    10. Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2012. "Bayesian and Robust Bayesian analysis under a general class of balanced loss functions," Statistical Papers, Springer, vol. 53(1), pages 51-60, February.
    11. Zinodiny, S. & Rezaei, S. & Nadarajah, S., 2017. "Bayes minimax estimation of the mean matrix of matrix-variate normal distribution under balanced loss function," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 110-120.
    12. Huang, Su-Yun, 2002. "On a Bayesian aspect for soft wavelet shrinkage estimation under an asymmetric Linex loss," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 171-175, January.
    13. Fourdrinier, Dominique & Strawderman, William E. & Wells, Martin T., 2003. "Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 24-39, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid Karamikabir & Nasrin Karamikabir & Mohammad Ali Khajeian & Mahmoud Afshari, 2023. "Bayesian Wavelet Stein’s Unbiased Risk Estimation of Multivariate Normal Distribution Under Reflected Normal Loss," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    2. Hobbad, Lahoucine & Marchand, Éric & Ouassou, Idir, 2021. "On shrinkage estimation of a spherically symmetric distribution for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    3. Gong, Aibo & Ke, Shaowei & Qiu, Yawen & Shen, Rui, 2022. "Robust pricing under strategic trading," Journal of Economic Theory, Elsevier, vol. 199(C).
    4. Cao, Ming-Xiang & He, Dao-Jiang, 2017. "Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 246-254.
    5. Marchand, Éric & Strawderman, William E., 2020. "On shrinkage estimation for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    6. Dominique Fourdrinier & Othmane Kortbi & William Strawderman, 2014. "Generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with residual vector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 285-296, February.
    7. Fourdrinier, Dominique & Strawderman, William E., 2016. "Stokes’ theorem, Stein’s identity and completeness," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 224-231.
    8. William E. Strawderman & Andrew L. Rukhin, 2010. "Simultaneous estimation and reduction of nonconformity in interlaboratory studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 219-234, March.
    9. Jafar Ahmadi & Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2009. "Prediction of k-records from a general class of distributions under balanced type loss functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 19-33, June.
    10. Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019. "Optimal shrinkage estimator for high-dimensional mean vector," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
    11. Xuehua Hu & Wenhao Gui, 2018. "Bayesian and Non-Bayesian Inference for the Generalized Pareto Distribution Based on Progressive Type II Censored Sample," Mathematics, MDPI, vol. 6(12), pages 1-26, December.
    12. Canu, Stéphane & Fourdrinier, Dominique, 2017. "Unbiased risk estimates for matrix estimation in the elliptical case," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 60-72.
    13. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    14. Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2012. "Bayesian and Robust Bayesian analysis under a general class of balanced loss functions," Statistical Papers, Springer, vol. 53(1), pages 51-60, February.
    15. Gómez-Déniz, E., 2008. "A generalization of the credibility theory obtained by using the weighted balanced loss function," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 850-854, April.
    16. Stéphane Canu & Dominique Fourdrinier, 2023. "Data based loss estimation of the mean of a spherical distribution with a residual vector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 851-878, November.
    17. Hamid Karamikabir & Nasrin Karamikabir & Mohammad Ali Khajeian & Mahmoud Afshari, 2023. "Bayesian Wavelet Stein’s Unbiased Risk Estimation of Multivariate Normal Distribution Under Reflected Normal Loss," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-20, March.
    18. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    19. Kyeongjun Lee & Youngseuk Cho, 2017. "Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 811-832, April.
    20. Essam A. Ahmed, 2014. "Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 752-768, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:177:y:2020:i:c:s0047259x19303239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.