IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v85y2003i1p24-39.html
   My bibliography  Save this article

Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix

Author

Listed:
  • Fourdrinier, Dominique
  • Strawderman, William E.
  • Wells, Martin T.

Abstract

Let X,V1,...,Vn-1 be n random vectors in with joint density of the formwhere both [theta] and [Sigma] are unknown. We consider the problem of the estimation of [theta] with the invariant loss ([delta]-[theta])'[Sigma]-1([delta]-[theta]) and propose estimators which dominate the usual estimator [delta]0(X)=X simultaneously for the entire class of such distributions. The proof involves the development of expressions which are analogous to unbiased estimators of risk and which in fact reduce to unbiased estimators of risk in the normal case. The method is applicable to the case where [Sigma] is structured. As an example, we examine the case where [Sigma] is diagonal.

Suggested Citation

  • Fourdrinier, Dominique & Strawderman, William E. & Wells, Martin T., 2003. "Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 24-39, April.
  • Handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:24-39
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00023-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
    2. Cellier, D. & Fourdrinier, D., 1995. "Shrinkage Estimators under Spherical Symmetry for the General Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 52(2), pages 338-351, February.
    3. Haff L. R. & Berger James, 1983. "A Class Of Minimax Estimators Of A Normal Mean Vector For Arbitrary Quadratic Loss And Unknown Covariance Matrix," Statistics & Risk Modeling, De Gruyter, vol. 1(2), pages 105-130, February.
    4. Srivastava, M. S. & Bilodeau, M., 1989. "Stein estimation under elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 247-259, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fourdrinier, Dominique & Marchand, Éric & Strawderman, William E., 2019. "On efficient prediction and predictive density estimation for normal and spherically symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 18-25.
    2. Besson, Olivier & Abramovich, Yuri I., 2014. "Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 237-246.
    3. Fourdrinier, Dominique & Strawderman, William E., 2016. "Stokes’ theorem, Stein’s identity and completeness," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 224-231.
    4. Dominique Fourdrinier & Othmane Kortbi & William Strawderman, 2014. "Generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with residual vector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 285-296, February.
    5. Wang, Cheng & Tong, Tiejun & Cao, Longbing & Miao, Baiqi, 2014. "Non-parametric shrinkage mean estimation for quadratic loss functions with unknown covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 222-232.
    6. Dominique Fourdrinier & William Strawderman, 2015. "Robust minimax Stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(4), pages 461-484, May.
    7. Aurélie Boisbunon & Stéphane Canu & Dominique Fourdrinier & William Strawderman & Martin T. Wells, 2014. "Akaike's Information Criterion, C p and Estimators of Loss for Elliptically Symmetric Distributions," International Statistical Review, International Statistical Institute, vol. 82(3), pages 422-439, December.
    8. Dominique Fourdrinier & William Strawderman & Martin Wells, 2006. "Estimation of a Location Parameter with Restrictions or “vague information” for Spherically Symmetric Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 73-92, March.
    9. Karamikabir, Hamid & Afshari, Mahmoud, 2020. "Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    10. Evgeny Pchelintsev, 2013. "Improved estimation in a non-Gaussian parametric regression," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 15-28, April.
    11. Fourdrinier, Dominique & Strawderman, William, 2014. "On the non existence of unbiased estimators of risk for spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 6-13.
    12. William E. Strawderman & Andrew L. Rukhin, 2010. "Simultaneous estimation and reduction of nonconformity in interlaboratory studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 219-234, March.
    13. Canu, Stéphane & Fourdrinier, Dominique, 2017. "Unbiased risk estimates for matrix estimation in the elliptical case," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 60-72.
    14. Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019. "Optimal shrinkage estimator for high-dimensional mean vector," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
    15. Fourdrinier Dominique & Strawderman William E. & Wells Martin T., 2009. "Improved estimation for elliptically symmetric distributions with unknown block diagonal covariance matrix," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 203-217, April.
    16. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Wells, Martin T. & Zhou, Gongfu, 2008. "Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2208-2220, November.
    18. Fourdrinier, Dominique & Mezoued, Fatiha & Wells, Martin T., 2016. "Estimation of the inverse scatter matrix of an elliptically symmetric distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 32-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fourdrinier Dominique & Strawderman William E. & Wells Martin T., 2009. "Improved estimation for elliptically symmetric distributions with unknown block diagonal covariance matrix," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 203-217, April.
    2. Kubokawa, T. & Srivastava, M. S., 2001. "Robust Improvement in Estimation of a Mean Matrix in an Elliptically Contoured Distribution," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 138-152, January.
    3. Marchand, Éric & Perron, François, 2005. "Improving on the mle of a bounded location parameter for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 227-238, February.
    4. Dominique Fourdrinier & William Strawderman, 2015. "Robust minimax Stein estimation under invariant data-based loss for spherically and elliptically symmetric distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(4), pages 461-484, May.
    5. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    6. K. Krishnamoorthy, 1991. "Estimation of a common multivariate normal mean vector," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(4), pages 761-771, December.
    7. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    8. Chang, Ching-Hui & Pal, Nabendu, 2008. "Testing on the common mean of several normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 321-333, December.
    9. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    10. Tsukuma, Hisayuki, 2010. "Shrinkage priors for Bayesian estimation of the mean matrix in an elliptically contoured distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1483-1492, July.
    11. Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
    12. Fourdrinier, Dominique & Strawderman, William E., 2008. "A unified and generalized set of shrinkage bounds on minimax Stein estimates," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2221-2233, November.
    13. Kubokawa, Tatsuya & Hyodo, Masashi & Srivastava, Muni S., 2013. "Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 496-515.
    14. Li, Run-Ze & Fang, Kai-Tai, 1995. "Estimation of scale matrix of elliptically contoured matrix distributions," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 289-297, September.
    15. Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 327-342, April.
    16. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    17. Sun, Xiaoqian & Zhou, Xian, 2008. "Improved minimax estimation of the bivariate normal precision matrix under the squared loss," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 127-134, February.
    18. Besson, Olivier & Vincent, François & Gendre, Xavier, 2020. "A Stein’s approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric," Statistics & Probability Letters, Elsevier, vol. 167(C).
    19. Fourdrinier, Dominique & Ouassou, Idir & Strawderman, William E., 2003. "Estimation of a parameter vector when some components are restricted," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 14-27, July.
    20. Perron, François, 1997. "On a Conjecture of Krishnamoorthy and Gupta, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 110-120, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:85:y:2003:i:1:p:24-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.