IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v70y2007i3d10.1007_s11192-007-0314-2.html
   My bibliography  Save this article

Tracking the evolution of new and emerging S&T via statement-linkages: Vision assessment in molecular machines

Author

Listed:
  • Douglas K. R. Robinson

    (University of Twente)

  • Martin Ruivenkamp

    (University of Twente)

  • Arie Rip

    (University of Twente)

Abstract

The past 10 years has seen an explosion of interest for the area of science and technology labelled “nanotechnology.” Although at an early stage, nanotechnology is providing a space for the creation of new alliances and the forging of new ties in many actor arenas, initiated based on promises and high expectations of the fruits that could be harvested from development and investment into nanotechnology. Those trying to characterise the dynamics of emerging ties and networks within this field are faced with a number of complexities which are characteristic of the nanotechnology umbrella term, which covers many technologies, various mixes of disciplines and actors, and ongoing debates about definitions of fields and terminology. In this paper we explore an approach for capturing dynamics of emergence of a particular area of nanotechnology by investigating visions of possible futures in relation to molecular mechanical systems (molecular machines). The focus of this text is to outline an approach used to map and analyse visions in an emerging field by taking as the unit of analysis linkages made in statements in texts, and the agglomeration of linkages around certain nodes. Taking the linkage, rather than node, allows one to probe deeper into the dynamics of emergence at early stages when definitions and meanings of certain words/nodes are in flux and patterns of their use change dramatically over short periods of time. As part of a larger project on single and macromolecular machines we explore the dynamics of visions in the field of molecular machines with the eventual aim to elucidate the shaping strength of visions within nanotechnology.

Suggested Citation

  • Douglas K. R. Robinson & Martin Ruivenkamp & Arie Rip, 2007. "Tracking the evolution of new and emerging S&T via statement-linkages: Vision assessment in molecular machines," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 831-858, March.
  • Handle: RePEc:spr:scient:v:70:y:2007:i:3:d:10.1007_s11192-007-0314-2
    DOI: 10.1007/s11192-007-0314-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-007-0314-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-007-0314-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard A. van Delden & Matthijs K. J. ter Wiel & Michael M. Pollard & Javier Vicario & Nagatoshi Koumura & Ben L. Feringa, 2005. "Unidirectional molecular motor on a gold surface," Nature, Nature, vol. 437(7063), pages 1337-1340, October.
    2. David, Paul A, 1985. "Clio and the Economics of QWERTY," American Economic Review, American Economic Association, vol. 75(2), pages 332-337, May.
    3. Richard B. Vallee & Peter Höök, 2003. "A magnificent machine," Nature, Nature, vol. 421(6924), pages 701-702, February.
    4. ., 1998. "Technological Change," Chapters, in: Heinz D. Kurz & Neri Salvadori (ed.), The Elgar Companion to Classical Economics, volume 0, chapter 127, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    2. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    3. Xiwen Liu & Xuezhao Wang & Lucheng Lyu & Yanpeng Wang, 2022. "Identifying disruptive technologies by integrating multi-source data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5325-5351, September.
    4. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
    5. Morteza Maghrebi & Ali Abbasi & Saeid Amiri & Reza Monsefi & Ahad Harati, 2011. "A collective and abridged lexical query for delineation of nanotechnology publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 15-25, January.
    6. Mario Coccia, 2017. "General purpose technologies in dynamic systems: visual representation and analyses of complex drivers," IRCrES Working Paper 201705, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
    7. Mario COCCIA, 2017. "The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies," Journal of Social and Administrative Sciences, KSP Journals, vol. 4(4), pages 291-303, December.
    8. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    9. Gustafsson, Robin & Kuusi, Osmo & Meyer, Martin, 2015. "Examining open-endedness of expectations in emerging technological fields: The case of cellulosic ethanol," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 179-193.
    10. Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truffer, Bernhard & Schippl, Jens & Fleischer, Torsten, 2017. "Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 34-48.
    2. Binz, Christian & Truffer, Bernhard & Li, Li & Shi, Yajuan & Lu, Yonglong, 2012. "Conceptualizing leapfrogging with spatially coupled innovation systems: The case of onsite wastewater treatment in China," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 155-171.
    3. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    4. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    5. Zolfagharian, Mohammadreza & Walrave, Bob & Raven, Rob & Romme, A. Georges L., 2019. "Studying transitions: Past, present, and future," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    6. Robinson, Douglas K.R. & Lagnau, Axel & Boon, Wouter P.C., 2019. "Innovation pathways in additive manufacturing: Methods for tracing emerging and branching paths from rapid prototyping to alternative applications," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 733-750.
    7. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    8. Susana Martins Moretto & António Brandão Moniz & Douglas Robinson, 2015. "Visions on high-speed trains: a methodological analysis," IET Working Papers Series 05/2015, Universidade Nova de Lisboa, IET/CICS.NOVA-Interdisciplinary Centre on Social Sciences, Faculty of Science and Technology.
    9. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    10. Meynard, Jean-Marc & Jeuffroy, Marie-Hélène & Le Bail, Marianne & Lefèvre, Amélie & Magrini, Marie-Benoit & Michon, Camille, 2017. "Designing coupled innovations for the sustainability transition of agrifood systems," Agricultural Systems, Elsevier, vol. 157(C), pages 330-339.
    11. Marta Gancarczyk, 2010. "Model schyłku i odrodzenia klastrów," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 1-21.
    12. Rehák Štefan & Hudec Oto & Buček Milan, 2013. "Path dependency and path plasticity in emerging industries: Two cases from Slovakia," ZFW – Advances in Economic Geography, De Gruyter, vol. 57(1-2), pages 52-66, October.
    13. Beomjin Choi & T. S. Raghu & Ajay Vinzé & Kevin J. Dooley, 2019. "Effectiveness of standards consortia: Social network perspectives," Information Systems Frontiers, Springer, vol. 21(2), pages 405-416, April.
    14. McCloskey Deirdre Nansen, 2018. "The Two Movements in Economic Thought, 1700–2000: Empty Economic Boxes Revisited," Man and the Economy, De Gruyter, vol. 5(2), pages 1-20, December.
    15. Yunyao Li & Yanji Ma, 2022. "Research on Industrial Innovation Efficiency and the Influencing Factors of the Old Industrial Base Based on the Lock-In Effect, a Case Study of Jilin Province, China," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
    16. Wenjun Guo & Wei Zhao & Min Min, 2022. "Operation Scale, Transfer Experience, and Farmers’ Willingness toward Farmland Transfer-In: A Case Study of Rice–Crayfish Cultivating Regions in China," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    17. Christian Dahl Winther, 2007. "Optimal research effort and product differentiation in network industries," Economics Working Papers 2007-19, Department of Economics and Business Economics, Aarhus University.
    18. Kevin Lansing, 2009. "Time Varying U.S. Inflation Dynamics and the New Keynesian Phillips Curve," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 304-326, April.
    19. Cecere, Grazia & Corrocher, Nicoletta & Battaglia, Riccardo David, 2015. "Innovation and competition in the smartphone industry: Is there a dominant design?," Telecommunications Policy, Elsevier, vol. 39(3), pages 162-175.
    20. Carayol, Nicolas & Dalle, Jean-Michel, 2007. "Sequential problem choice and the reward system in Open Science," Structural Change and Economic Dynamics, Elsevier, vol. 18(2), pages 167-191, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:70:y:2007:i:3:d:10.1007_s11192-007-0314-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.