IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i8d10.1007_s11192-024-05093-1.html
   My bibliography  Save this article

From informal to formal: scientific knowledge role transition prediction

Author

Listed:
  • Jinqing Yang

    (Central China Normal University)

  • Zhifeng Liu

    (Peking University)

  • Yong Huang

    (Wuhan University)

Abstract

Comprehending the patterns of knowledge evolution benefits funding agencies, policymakers, and researchers in developing creative ideas. We introduce the notation of scientific knowledge role transition as an evolution from informal to formal. We investigate how different factors affect the role transition of scientific knowledge, considering the two primary levels—transition pace and transition possibility. The interpretive machine learning models are conducted to discover that the Gradient Boosting classifier performs better for predicting transition possibility, and Random Forests regression is the most effective for predicting transition pace. Specifically, knowledge attribute features have a more obvious effect on the transition probability, while knowledge network structure has a greater effect on the transition pace. We further find that knowledge relatedness and citation number have negative effects on knowledge role transition, while adoption frequency, indegree centrality in the knowledge citation network, node number of the egocentric co-occurrence network, and journal impact of scientific knowledge have positive effects. The aforementioned discoveries enhance our comprehension of scientific knowledge evolution patterns and provide insight into the trajectory of scientific and technological advancement.

Suggested Citation

  • Jinqing Yang & Zhifeng Liu & Yong Huang, 2024. "From informal to formal: scientific knowledge role transition prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4909-4935, August.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:8:d:10.1007_s11192-024-05093-1
    DOI: 10.1007/s11192-024-05093-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05093-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05093-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    2. S. Lozano & L. Calzada-Infante & B. Adenso-Díaz & S. García, 2019. "Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 609-629, August.
    3. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    4. Tang, Xuli & Li, Xin & Ding, Ying & Song, Min & Bu, Yi, 2020. "The pace of artificial intelligence innovations: Speed, talent, and trial-and-error," Journal of Informetrics, Elsevier, vol. 14(4).
    5. Finn Valentin & Maria Theresa Norn & Lars Alkaersig, 2016. "Orientations and outcome of interdisciplinary research: the case of research behaviour in translational medical science," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 67-90, January.
    6. Dahlander, Linus & Gann, David M. & Wallin, Martin W., 2021. "How open is innovation? A retrospective and ideas forward," Research Policy, Elsevier, vol. 50(4).
    7. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    8. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    9. Yoon, Jisung & Park, Jinseo & Yun, Jinhyuk & Jung, Woo-Sung, 2023. "Quantifying knowledge synchronization with the network-driven approach," Journal of Informetrics, Elsevier, vol. 17(4).
    10. Yang, Jinqing & Bu, Yi & Lu, Wei & Huang, Yong & Hu, Jiming & Huang, Shengzhi & Zhang, Li, 2022. "Identifying keyword sleeping beauties: A perspective on the knowledge diffusion process," Journal of Informetrics, Elsevier, vol. 16(1).
    11. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    12. Jinqing Yang & Zhifeng Liu & Xiufeng Cheng & Guanghui Ye, 2024. "Understanding the keyword adoption behavior patterns of researchers from a functional structure perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3359-3384, June.
    13. Mojgan Naghavi & Derek Walsh, 2011. "Learn from Ireland's knowledge economy," Nature, Nature, vol. 476(7361), pages 399-399, August.
    14. Behrouzi, Saman & Shafaeipour Sarmoor, Zahra & Hajsadeghi, Khosrow & Kavousi, Kaveh, 2020. "Predicting scientific research trends based on link prediction in keyword networks," Journal of Informetrics, Elsevier, vol. 14(4).
    15. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.
    16. Qi Wang, 2018. "A bibliometric model for identifying emerging research topics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(2), pages 290-304, February.
    17. Chen, Baitong & Tsutsui, Satoshi & Ding, Ying & Ma, Feicheng, 2017. "Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 11(4), pages 1175-1189.
    18. Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
    19. Lissoni, Francesco, 2001. "Knowledge codification and the geography of innovation: the case of Brescia mechanical cluster," Research Policy, Elsevier, vol. 30(9), pages 1479-1500, December.
    20. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    2. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    3. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    4. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    5. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    6. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    7. Xiaoyu Liu & Alan L. Porter, 2020. "A 3-dimensional analysis for evaluating technology emergence indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 27-55, July.
    8. Zhenyu Yang & Wenyu Zhang & Zhimin Wang & Xiaoling Huang, 2024. "A deep learning-based method for predicting the emerging degree of research topics using emerging index," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4021-4042, July.
    9. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    10. Jiang, Man & Yang, Siluo & Gao, Qiang, 2024. "Multidimensional indicators to identify emerging technologies: Perspective of technological knowledge flow," Journal of Informetrics, Elsevier, vol. 18(1).
    11. Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
    12. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    13. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    14. Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
    15. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    16. Baaden, Philipp & Rennings, Michael & John, Marcus & Bröring, Stefanie, 2024. "On the emergence of interdisciplinary scientific fields: (how) does it relate to science convergence?," Research Policy, Elsevier, vol. 53(6).
    17. Ryosuke L. Ohniwa & Kunio Takeyasu & Aiko Hibino, 2022. "Researcher dynamics in the generation of emerging topics in life sciences and medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 871-884, February.
    18. Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
    19. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    20. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:8:d:10.1007_s11192-024-05093-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.