Predicting scientific breakthroughs based on knowledge structure variations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2020.120502
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
- Naoki Shibata & Yuya Kajikawa & Katsumori Matsushima, 2007. "Topological analysis of citation networks to discover the future core articles," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(6), pages 872-882, April.
- Lv, Yanhua & Ding, Ying & Song, Min & Duan, Zhiguang, 2018. "Topology-driven trend analysis for drug discovery," Journal of Informetrics, Elsevier, vol. 12(3), pages 893-905.
- Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017.
"Bias against novelty in science: A cautionary tale for users of bibliometric indicators,"
Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
- Jian Wang & Reinhilde Veugelers & Paula Stephan, 2015. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Working Papers of Department of Management, Strategy and Innovation, Leuven 520305, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Veugelers, Reinhilde & wang, jian & Stephan, Paula, 2016. "Bias against Novelty in Science: A Cautionary Tale for Users of Bibliometric Indicators," CEPR Discussion Papers 11228, C.E.P.R. Discussion Papers.
- Jian Wang & Reinhilde Veugelers & Paula Stephan, 2016. "Bias against Novelty in Science: A Cautionary Tale for Users of Bibliometric Indicators," NBER Working Papers 22180, National Bureau of Economic Research, Inc.
- Jesper W. Schneider & Rodrigo Costas, 2017. "Identifying potential “breakthrough” publications using refined citation analyses: Three related explorative approaches," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(3), pages 709-723, March.
- Ponomarev, Ilya V. & Williams, Duane E. & Hackett, Charles J. & Schnell, Joshua D. & Haak, Laurel L., 2014. "Predicting highly cited papers: A Method for Early Detection of Candidate Breakthroughs," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 49-55.
- Hu, Xiaojun & Rousseau, Ronald, 2016. "Scientific influence is not always visible: The phenomenon of under-cited influential publications," Journal of Informetrics, Elsevier, vol. 10(4), pages 1079-1091.
- Yong Huang & Yi Bu & Ying Ding & Wei Lu, 2018. "Number versus structure: towards citing cascades," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 2177-2193, December.
- Zhang, Yi & Lu, Jie & Liu, Feng & Liu, Qian & Porter, Alan & Chen, Hongshu & Zhang, Guangquan, 2018. "Does deep learning help topic extraction? A kernel k-means clustering method with word embedding," Journal of Informetrics, Elsevier, vol. 12(4), pages 1099-1117.
- Small, Henry, 2018. "Characterizing highly cited method and non-method papers using citation contexts: The role of uncertainty," Journal of Informetrics, Elsevier, vol. 12(2), pages 461-480.
- Xiaojun Hu & Ronald Rousseau, 2017. "Nobel Prize winners 2016: Igniting or sparking foundational publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 1053-1063, February.
- Yoshiyuki Takeda & Yuya Kajikawa, 2010. "Tracking modularity in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 783-792, June.
- Suominen, Arho & Peng, Haoshu & Ranaei, Samira, 2019. "Examining the dynamics of an emerging research network using the case of triboelectric nanogenerators," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 820-830.
- Holly N. Wolcott & Matthew J. Fouch & Elizabeth R. Hsu & Leo G. DiJoseph & Catherine A. Bernaciak & James G. Corrigan & Duane E. Williams, 2016. "Modeling time-dependent and -independent indicators to facilitate identification of breakthrough research papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 807-817, May.
- Yaqub, Ohid, 2018. "Serendipity: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 47(1), pages 169-179.
- Porter, Alan L. & Chiavetta, Denise & Newman, Nils C., 2020. "Measuring tech emergence: A contest," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
- Winnink, J.J. & Tijssen, Robert J.W. & van Raan, A.F.J., 2019. "Searching for new breakthroughs in science: How effective are computerised detection algorithms?," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 673-686.
- Bettencourt, Luís M.A. & Kaiser, David I. & Kaur, Jasleen, 2009. "Scientific discovery and topological transitions in collaboration networks," Journal of Informetrics, Elsevier, vol. 3(3), pages 210-221.
- Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
- Tibor Braun & Wolfgang Glänzel & András Schubert, 2010. "On Sleeping Beauties, Princes and other tales of citation distributions …," Research Evaluation, Oxford University Press, vol. 19(3), pages 195-202, September.
- Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
- Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
- Guo, Jianfeng & Pan, Jiaofeng & Guo, Jianxin & Gu, Fu & Kuusisto, Jari, 2019. "Measurement framework for assessing disruptive innovations," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 250-265.
- Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
- Small, Henry & Tseng, Hung & Patek, Mike, 2017. "Discovering discoveries: Identifying biomedical discoveries using citation contexts," Journal of Informetrics, Elsevier, vol. 11(1), pages 46-62.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Luo, Zhuoran & Lu, Wei & He, Jiangen & Wang, Yuqi, 2022. "Combination of research questions and methods: A new measurement of scientific novelty," Journal of Informetrics, Elsevier, vol. 16(2).
- Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
- Coccia, Mario, 2022. "Probability of discoveries between research fields to explain scientific and technological change," Technology in Society, Elsevier, vol. 68(C).
- Shiyun Wang & Yaxue Ma & Jin Mao & Yun Bai & Zhentao Liang & Gang Li, 2023. "Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 150-167, February.
- Xian Li & Ronald Rousseau & Liming Liang & Fangjie Xi & Yushuang Lü & Yifan Yuan & Xiaojun Hu, 2022. "Is low interdisciplinarity of references an unexpected characteristic of Nobel Prize winning research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2105-2122, April.
- Tohalino, Jorge A.V. & Amancio, Diego R., 2022. "On predicting research grants productivity via machine learning," Journal of Informetrics, Elsevier, vol. 16(2).
- Li, Xin & Wen, Yang & Jiang, Jiaojiao & Daim, Tugrul & Huang, Lucheng, 2022. "Identifying potential breakthrough research: A machine learning method using scientific papers and Twitter data," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Houqiang Yu & Yian Liang & Yinghua Xie, 2024. "Predicting Scientific Breakthroughs Based on Structural Dynamic of Citation Cascades," Mathematics, MDPI, vol. 12(11), pages 1-18, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xue Wang & Xuemei Yang & Jian Du & Xuwen Wang & Jiao Li & Xiaoli Tang, 2021. "A deep learning approach for identifying biomedical breakthrough discoveries using context analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5531-5549, July.
- Xian Li & Ronald Rousseau & Liming Liang & Fangjie Xi & Yushuang Lü & Yifan Yuan & Xiaojun Hu, 2022. "Is low interdisciplinarity of references an unexpected characteristic of Nobel Prize winning research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2105-2122, April.
- Li, Xin & Wen, Yang & Jiang, Jiaojiao & Daim, Tugrul & Huang, Lucheng, 2022. "Identifying potential breakthrough research: A machine learning method using scientific papers and Twitter data," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Shiyun Wang & Yaxue Ma & Jin Mao & Yun Bai & Zhentao Liang & Gang Li, 2023. "Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(2), pages 150-167, February.
- Hou, Jianhua & Wang, Dongyi & Li, Jing, 2022. "A new method for measuring the originality of academic articles based on knowledge units in semantic networks," Journal of Informetrics, Elsevier, vol. 16(3).
- Li, Xin & Ma, Xiaodi & Feng, Ye, 2024. "Early identification of breakthrough research from sleeping beauties using machine learning," Journal of Informetrics, Elsevier, vol. 18(2).
- Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
- Winnink, J.J. & Tijssen, Robert J.W. & van Raan, A.F.J., 2019. "Searching for new breakthroughs in science: How effective are computerised detection algorithms?," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 673-686.
- Yang, Jinqing & Liu, Zhifeng, 2022. "The effect of citation behaviour on knowledge diffusion and intellectual structure," Journal of Informetrics, Elsevier, vol. 16(1).
- Sotaro Shibayama & Jian Wang, 2020. "Measuring originality in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 409-427, January.
- Luo, Zhuoran & Lu, Wei & He, Jiangen & Wang, Yuqi, 2022. "Combination of research questions and methods: A new measurement of scientific novelty," Journal of Informetrics, Elsevier, vol. 16(2).
- Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
- Guoqiang Liang & Ying Lou & Haiyan Hou, 2022. "Revisiting the disruptive index: evidence from the Nobel Prize-winning articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5721-5730, October.
- Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
- Sam Arts & Nicola Melluso & Reinhilde Veugelers, 2023. "Beyond Citations: Measuring Novel Scientific Ideas and their Impact in Publication Text," Papers 2309.16437, arXiv.org, revised Oct 2024.
- Zhentao Liang & Jin Mao & Gang Li, 2023. "Bias against scientific novelty: A prepublication perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 99-114, January.
- Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
- Yang, Alex Jie & Wu, Linwei & Zhang, Qi & Wang, Hao & Deng, Sanhong, 2023. "The k-step h-index in citation networks at the paper, author, and institution levels," Journal of Informetrics, Elsevier, vol. 17(4).
- Wang, Cheng-Jun & Yan, Lihan & Cui, Haochuan, 2023. "Unpacking the essential tension of knowledge recombination: Analyzing the impact of knowledge spanning on citation impact and disruptive innovation," Journal of Informetrics, Elsevier, vol. 17(4).
- Francisco Díez-Martín & Alicia Blanco-González & Camilo Prado-Román, 2021. "The intellectual structure of organizational legitimacy research: a co-citation analysis in business journals," Review of Managerial Science, Springer, vol. 15(4), pages 1007-1043, May.
More about this item
Keywords
Scientific breakthrough; Early citing structure; Knowledge structure; Structure variation; Prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:164:y:2021:i:c:s0040162520313287. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.