Anticipating multi-technology convergence: a machine learning approach using patent information
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-020-03842-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kim, Hyunwoo & Hong, Suckwon & Kwon, Ohjin & Lee, Changyong, 2017. "Concentric diversification based on technological capabilities: Link analysis of products and technologies," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 246-257.
- Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
- Kim, Namil & Lee, Hyeokseong & Kim, Wonjoon & Lee, Hyunjong & Suh, Jong Hwan, 2015. "Dynamic patterns of industry convergence: Evidence from a large amount of unstructured data," Research Policy, Elsevier, vol. 44(9), pages 1734-1748.
- Xu, Guannan & Wu, Yuchen & Minshall, Tim & Zhou, Yuan, 2018. "Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 208-221.
- Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
- Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
- Aharonson, Barak S. & Schilling, Melissa A., 2016. "Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution," Research Policy, Elsevier, vol. 45(1), pages 81-96.
- Kim, Juram & Kim, Seungho & Lee, Changyong, 2019. "Anticipating technological convergence: Link prediction using Wikipedia hyperlinks," Technovation, Elsevier, vol. 79(C), pages 25-34.
- Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
- Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
- Fredrik Hacklin & Vicente Raurich & Christian Marxt, 2005. "Implications Of Technological Convergence On Innovation Trajectories: The Case Of Ict Industry," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 313-330.
- Ron Adner & Rahul Kapoor, 2010. "Value creation in innovation ecosystems: how the structure of technological interdependence affects firm performance in new technology generations," Strategic Management Journal, Wiley Blackwell, vol. 31(3), pages 306-333, March.
- Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
- Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
- Karki, M. M. S., 1997. "Patent citation analysis: A policy analysis tool," World Patent Information, Elsevier, vol. 19(4), pages 269-272, December.
- Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
- Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
- Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
- Granstrand, Ove & Holgersson, Marcus, 2020. "Innovation ecosystems: A conceptual review and a new definition," Technovation, Elsevier, vol. 90.
- Oh, Deog-Seong & Phillips, Fred & Park, Sehee & Lee, Eunghyun, 2016. "Innovation ecosystems: A critical examination," Technovation, Elsevier, vol. 54(C), pages 1-6.
- Giovanni Dosi, 1984. "Technical Change and Industrial Transformation," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-349-17521-5, December.
- Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
- Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Keungoui Kim & Dieter F. Kogler & Sira Maliphol, 2024. "Identifying interdisciplinary emergence in the science of science: combination of network analysis and BERTopic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
- Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
- Jie Liu, 2024. "“Divergent” cross-domain stretching for technology fusion: validating the knowledge partition search model using patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3023-3043, June.
- Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
- Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
- Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
- Haoyang Song & Jianhua Hou & Yang Zhang, 2022. "Patent protection: does it promote or inhibit the patented technological knowledge diffusion?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2351-2379, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
- Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
- Kim, Juram & Kim, Seungho & Lee, Changyong, 2019. "Anticipating technological convergence: Link prediction using Wikipedia hyperlinks," Technovation, Elsevier, vol. 79(C), pages 25-34.
- Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
- Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
- Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
- Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
- Kim, Juram & Hong, Suckwon & Kang, Yubin & Lee, Changyong, 2023. "Domain-specific valuation of university technologies using bibliometrics, Jonckheere–Terpstra tests, and data envelopment analysis," Technovation, Elsevier, vol. 122(C).
- Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
- Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
- Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.
- Hong, Suckwon & Kim, Juram & Woo, Han-Gyun & Kim, Young-Choon & Lee, Changyong, 2022. "Screening ideas in the early stages of technology development: A word2vec and convolutional neural network approach," Technovation, Elsevier, vol. 112(C).
- Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
More about this item
Keywords
Multi-technology convergence; Machine learning approach; Patent information; Technology ecology network; Association rule mining; Link prediction analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:3:d:10.1007_s11192-020-03842-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.