IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i6d10.1007_s11192-024-05049-5.html
   My bibliography  Save this article

“Divergent” cross-domain stretching for technology fusion: validating the knowledge partition search model using patent data

Author

Listed:
  • Jie Liu

    (Nanjing University of Science and Technology)

Abstract

Technology fusion refers to the phenomenon in which distinct technology domains overlap. Despite its importance in technology innovation and evolution, few studies have explored the general pattern of the cross-domain search process leading to technology fusion. This paper proposes that the stretching between distinct technology domains could be viewed as searching in a two-dimensional knowledge partition landscape and then empirically validates the model based on a large patent dataset derived from the U.S. Patent and Trade Office (USPTO). The findings show that the general pattern of the search processes leading to technology fusion could be viewed as searching across a broad technology scope to identify limited valuable linking points within existing technology domains, and the search processes are mainly “divergent”; that is, innovative agents gradually extend the search scope to pursue new hybrid technologies. However, the cross-domain search would be more targeted if the two technology domains were closer to each other. In addition, compared to searching across a broader technology scope, digging in certain technology areas is more important for the generation of new high-impact hybrid technologies. This study provides a novel perspective for understanding the new knowledge creation process and technology fusion.

Suggested Citation

  • Jie Liu, 2024. "“Divergent” cross-domain stretching for technology fusion: validating the knowledge partition search model using patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3023-3043, June.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05049-5
    DOI: 10.1007/s11192-024-05049-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05049-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05049-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    2. Phanish Puranam & Murali Swamy, 2016. "How Initial Representations Shape Coupled Learning Processes," Organization Science, INFORMS, vol. 27(2), pages 323-335, April.
    3. Rosenberg, Nathan, 1963. "Technological Change in the Machine Tool Industry, 1840–1910," The Journal of Economic History, Cambridge University Press, vol. 23(4), pages 414-443, December.
    4. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    5. Changyong Lee & Suckwon Hong & Juram Kim, 2021. "Anticipating multi-technology convergence: a machine learning approach using patent information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1867-1896, March.
    6. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    7. Pezzoni, Michele & Veugelers, Reinhilde & Visentin, Fabiana, 2022. "How fast is this novel technology going to be a hit? Antecedents predicting follow-on inventions," Research Policy, Elsevier, vol. 51(3).
    8. Larry Samuelson, 2004. "Modeling Knowledge in Economic Analysis," Journal of Economic Literature, American Economic Association, vol. 42(2), pages 367-403, June.
    9. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    10. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    11. Sam Arts & Reinhilde Veugelers, 2015. "Technology familiarity, recombinant novelty, and breakthrough invention," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(6), pages 1215-1246.
    12. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    13. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    14. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    15. Cavalheiro, Gabriel Marcuzzo do Canto & Joia, Luiz Antonio & Van Veenstra, Anne Fleur, 2016. "Examining the trajectory of a standard for patent classification: An institutional account of a technical cooperation between EPO and USPTO," Technology in Society, Elsevier, vol. 46(C), pages 10-17.
    16. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    17. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    18. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    19. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brea, Edgar, 2024. "The yin yang of AI: Exploring how commercial and non-commercial orientations shape machine learning innovation," Research Policy, Elsevier, vol. 53(6).
    2. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    3. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    4. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    5. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    6. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    8. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    9. Deyu Li & Floor Alkemade & Koen Frenken & Gaston Heimeriks, 2023. "Catching up in clean energy technologies: a patent analysis," The Journal of Technology Transfer, Springer, vol. 48(2), pages 693-715, April.
    10. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    11. Marianna Epicoco & Magali Jaoul-Grammare & Anne Plunket, 2022. "Radical technologies, recombinant novelty and productivity growth: a cliometric approach," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 673-711, April.
    12. Lai, I-Chun & Su, Hsin-Ning, 2024. "Knowledge spectrum explored: Understanding source-recipient interactions and their influence on technology convergence," Technovation, Elsevier, vol. 133(C).
    13. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    14. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    15. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    16. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    17. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    18. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    19. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    20. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:6:d:10.1007_s11192-024-05049-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.