IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v65y2014i5p1007-1017.html
   My bibliography  Save this article

Patent citation analysis: Calculating science linkage based on citing motivation

Author

Listed:
  • Rui Li
  • Tamy Chambers
  • Ying Ding
  • Guo Zhang
  • Liansheng Meng

Abstract

No abstract is available for this item.

Suggested Citation

  • Rui Li & Tamy Chambers & Ying Ding & Guo Zhang & Liansheng Meng, 2014. "Patent citation analysis: Calculating science linkage based on citing motivation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1007-1017, May.
  • Handle: RePEc:bla:jinfst:v:65:y:2014:i:5:p:1007-1017
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/asi.23054
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoonki Rhee & Sejun Yoon & Hyunseok Park, 2022. "Exploring Knowledge Trajectories of Accounting Information Systems Using Business Method Patents and Knowledge Persistence-Based Main Path Analysis," Mathematics, MDPI, vol. 10(18), pages 1-22, September.
    2. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.
    3. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    4. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    5. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    6. Appio, Francesco Paolo & Martini, Antonella & Fantoni, Gualtiero, 2017. "The light and shade of knowledge recombination: Insights from a general-purpose technology," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 154-165.
    7. Hou, Jianhua & Tang, Shiqi & Zhang, Yang & Song, Haoyang, 2023. "Does prior knowledge affect patent technology diffusion? A semantic-based patent citation contribution analysis," Journal of Informetrics, Elsevier, vol. 17(2).
    8. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    9. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    10. Joaquín M. Azagra-Caro & Elena M. Tur, 2018. "Examiner trust in applicants to the European Patent Office: country specificities," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1319-1348, December.
    11. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    12. Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    13. Huang, Ying & Chen, Lixin & Zhang, Lin, 2020. "Patent citation inflation: The phenomenon, its measurement, and relative indicators to temper its effects," Journal of Informetrics, Elsevier, vol. 14(2).
    14. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.
    15. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    16. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    17. Lee, Jangwook, 2020. "Do Patents Lead to an Increase in Firm Value? Evidence from Korea," KDI Journal of Economic Policy, Korea Development Institute (KDI), vol. 42(3), pages 33-52.
    18. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    19. Azagra-Caro,Joaquín M. & Tur,Elena M., 2014. "Examiner amendments to applications to the european patent office: Procedures, knowledge bases and country specificities," INGENIO (CSIC-UPV) Working Paper Series 201406, INGENIO (CSIC-UPV), revised 29 Nov 2018.
    20. Guijie Zhang & Guang Yu & Yuqiang Feng & Luning Liu & Zhenhua Yang, 2017. "Improving the publication delay model to characterize the patent granting process," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 621-637, May.
    21. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    22. Jordan A. Comins, 2015. "Data-mining the technological importance of government-funded patents in the private sector," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 425-435, August.
    23. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:65:y:2014:i:5:p:1007-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.