IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225276.html
   My bibliography  Save this article

Evaluating the impact of citations of articles based on knowledge flow patterns hidden in the citations

Author

Listed:
  • Mingyang Wang
  • Jiaqi Zhang
  • Shijia Jiao
  • Tianyu Zhang

Abstract

The effective evaluation of the impact of a scholarly article is a significant endeavor; for this reason, it has garnered attention. From the perspective of knowledge flow, this paper extracted various knowledge flow patterns concealed in articles citation counts to describe the citation impact of the articles. First, the intensity characteristic of knowledge flow was investigated to distinguish the different citation vitality of articles. Second, the knowledge diffusion capacity was examined to differentiate the size of the scope of articles’ influences on the academic environment. Finally, the knowledge transfer capacity was discussed to investigate the support degree of articles on the follow-up research. Experimental results show that articles got more citations recently have a higher knowledge flow intensity. The articles have various impacts on the academic environment and have different supporting effects on the follow-up research, representing the differences in their knowledge diffusion and knowledge transfer capabilities. Compared with the single quantitative index of citation frequency, these knowledge flow patterns can carefully explore the citation value of articles. By integrating the three knowledge flow patterns to examine the total citation impact of articles, we found that the articles exhibit distinct value of citation impact even if they were published in the same field, in the same year, and with similar citation frequencies.

Suggested Citation

  • Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Tianyu Zhang, 2019. "Evaluating the impact of citations of articles based on knowledge flow patterns hidden in the citations," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0225276
    DOI: 10.1371/journal.pone.0225276
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225276
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225276&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pei-Shan Chi & Wolfgang Glänzel, 2017. "An empirical investigation of the associations among usage, scientific collaboration and citation impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 403-412, July.
    2. Pei-Shan Chi & Juan Gorraiz & Wolfgang Glänzel, 2019. "Comparing capture, usage and citation indicators: an altmetric analysis of journal papers in chemistry disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1461-1473, September.
    3. Wolfgang Glänzel & Bart Thijs, 2018. "The role of baseline granularity for benchmarking citation impact. The case of CSS profiles," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 521-536, July.
    4. Xiaojun Wan & Fang Liu, 2014. "Are all literature citations equally important? Automatic citation strength estimation and its applications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(9), pages 1929-1938, September.
    5. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    6. Zhi Li & Qinke Peng & Che Liu, 2016. "Two citation-based indicators to measure latent referential value of papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1299-1313, September.
    7. Alison Abbott, 2009. "Italy introduces performance-related funding," Nature, Nature, vol. 460(7255), pages 559-559, July.
    8. Erjia Yan & Ying Ding & Cassidy R. Sugimoto, 2011. "P-Rank: An indicator measuring prestige in heterogeneous scholarly networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(3), pages 467-477, March.
    9. Pei-Shan Chi & Wolfgang Glänzel, 2018. "Comparison of citation and usage indicators in research assessment in scientific disciplines and journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 537-554, July.
    10. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    11. Lei Wang & Bart Thijs & Wolfgang Glänzel, 2015. "Characteristics of international collaboration in sport sciences publications and its influence on citation impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 843-862, November.
    12. Mingyang Wang & Guang Yu & Shuang An & Daren Yu, 2012. "Discovery of factors influencing citation impact based on a soft fuzzy rough set model," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 635-644, December.
    13. Liwei Cai & Jiahao Tian & Jiaying Liu & Xiaomei Bai & Ivan Lee & Xiangjie Kong & Feng Xia, 2019. "Scholarly impact assessment: a survey of citation weighting solutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 453-478, February.
    14. Dag W Aksnes, 2003. "Characteristics of highly cited papers," Research Evaluation, Oxford University Press, vol. 12(3), pages 159-170, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arida Ferti Syafiandini & Jeeyoung Yoon & Soobin Lee & Chaemin Song & Erjia Yan & Min Song, 2024. "Examining between-sectors knowledge transfer in the pharmacology field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3115-3147, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    2. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    3. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    4. Yuanyuan Liu & Qiang Wu & Shijie Wu & Yong Gao, 2021. "Weighted citation based on ranking-related contribution: a new index for evaluating article impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8653-8672, October.
    5. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    6. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2022. "Analysing academic paper ranking algorithms using test data and benchmarks: an investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4045-4074, July.
    7. Wang, Zhiqi & Chen, Yue & Glänzel, Wolfgang, 2020. "Preprints as accelerator of scholarly communication: An empirical analysis in Mathematics," Journal of Informetrics, Elsevier, vol. 14(4).
    8. Zhang, Fang & Wu, Shengli, 2020. "Predicting future influence of papers, researchers, and venues in a dynamic academic network," Journal of Informetrics, Elsevier, vol. 14(2).
    9. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    10. Ruan, Xuanmin & Zhu, Yuanyang & Li, Jiang & Cheng, Ying, 2020. "Predicting the citation counts of individual papers via a BP neural network," Journal of Informetrics, Elsevier, vol. 14(3).
    11. Binglu Wang & Yi Bu & Yang Xu, 2018. "A quantitative exploration on reasons for citing articles from the perspective of cited authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 675-687, August.
    12. Bikun Chen & Dannan Deng & Zhouyan Zhong & Chengzhi Zhang, 2020. "Exploring linguistic characteristics of highly browsed and downloaded academic articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1769-1790, March.
    13. Zhiqi Wang & Wolfgang Glänzel & Yue Chen, 2020. "The impact of preprints in Library and Information Science: an analysis of citations, usage and social attention indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1403-1423, November.
    14. Fang Zhang & Shengli Wu, 2021. "Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7197-7222, August.
    15. Drahomira Herrmannova & Robert M. Patton & Petr Knoth & Christopher G. Stahl, 2018. "Do citations and readership identify seminal publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 239-262, April.
    16. Mingyang Wang & Shijia Jiao & Kah-Hin Chai & Guangsheng Chen, 2019. "Building journal’s long-term impact: using indicators detected from the sustained active articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 261-283, October.
    17. Wencan Tian & Yongzhen Wang & Zhigang Hu & Ruonan Cai & Guangyao Zhang & Xianwen Wang, 2024. "Does Granger causality exist between article usage and publication counts? A topic-level time-series evidence from IEEE Xplore," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3285-3302, June.
    18. Wolfgang Glänzel & Pei-Shan Chi, 2020. "The big challenge of Scientometrics 2.0: exploring the broader impact of scientific research in public health," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1011-1031, November.
    19. Jianhua Hou & Da Ma, 2020. "How the high-impact papers formed? A study using data from social media and citation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2597-2615, December.
    20. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.