IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v10y2016i3p750-761.html
   My bibliography  Save this article

Mapping the evolution of scientific fields based on cross-field authors

Author

Listed:
  • Sun, Xiaoling
  • Ding, Kun
  • Lin, Yuan

Abstract

Mapping the evolution of scientific fields has drawn much attention in recent years. Researchers have proposed various methods to describe, explain and predict different aspects of science. Network-based analysis has been widely used for knowledge networks, in order to track the changes of research topics and the spread of scientific ideas. Here we propose a novel approach for mapping the science from the perspective of cross-field authors. Computer science is selected based on its interdisciplinary applications. We build a scientific network consisting of computer science conferences as nodes, and two conferences are linked if there exist authors that published papers on both conferences. The scientific fields are identified by community detection algorithm. The results suggest the proposed method based on author overlaps across fields are effective in mapping the science.

Suggested Citation

  • Sun, Xiaoling & Ding, Kun & Lin, Yuan, 2016. "Mapping the evolution of scientific fields based on cross-field authors," Journal of Informetrics, Elsevier, vol. 10(3), pages 750-761.
  • Handle: RePEc:eee:infome:v:10:y:2016:i:3:p:750-761
    DOI: 10.1016/j.joi.2016.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157715302352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2016.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoling Sun & Hongfei Lin & Kan Xu & Kun Ding, 2015. "How we collaborate: characterizing, modeling and predicting scientific collaborations," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(1), pages 43-60, July.
    2. Richard Klavans & Kevin W. Boyack, 2006. "Quantitative evaluation of large maps of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 475-499, September.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    5. Milojević, Staša, 2015. "Quantifying the cognitive extent of science," Journal of Informetrics, Elsevier, vol. 9(4), pages 962-973.
    6. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    7. David Chavalarias & Jean-Philippe Cointet, 2013. "Phylomemetic Patterns in Science Evolution—The Rise and Fall of Scientific Fields," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    8. Leydesdorff, Loet & Rafols, Ismael, 2012. "Interactive overlays: A new method for generating global journal maps from Web-of-Science data," Journal of Informetrics, Elsevier, vol. 6(2), pages 318-332.
    9. Martin Rosvall & Carl T Bergstrom, 2010. "Mapping Change in Large Networks," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-7, January.
    10. Loet Leydesdorff & Ismael Rafols & Chaomei Chen, 2013. "Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal–journal citations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(12), pages 2573-2586, December.
    11. Boyack, Kevin W. & Klavans, Richard, 2014. "Including cited non-source items in a large-scale map of science: What difference does it make?," Journal of Informetrics, Elsevier, vol. 8(3), pages 569-580.
    12. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    13. Mark Herrera & David C Roberts & Natali Gulbahce, 2010. "Mapping the Evolution of Scientific Fields," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
    14. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    15. van Eck, N.J.P. & Waltman, L., 2009. "VOSviewer: A Computer Program for Bibliometric Mapping," ERIM Report Series Research in Management ERS-2009-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    17. David Chavalarias & Jean-Philippe Cointet, 2008. "Bottom-up scientific field detection for dynamical and hierarchical science mapping, methodology and case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(1), pages 37-50, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Inchae & Yoon, Byungun, 2018. "Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network," Journal of Informetrics, Elsevier, vol. 12(4), pages 1199-1222.
    2. Qikai Cheng & Jiamin Wang & Wei Lu & Yong Huang & Yi Bu, 2020. "Keyword-citation-keyword network: a new perspective of discipline knowledge structure analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1923-1943, September.
    3. Steffen Wendzel & Cédric Lévy-Bencheton & Luca Caviglione, 2020. "Not all areas are equal: analysis of citations in information security research," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 267-286, January.
    4. Andrea Palmucci & Hao Liao & Andrea Napoletano & Andrea Zaccaria, 2020. "Where is your field going? A machine learning approach to study the relative motion of the domains of physics," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    5. Malik Khizar Hayat & Ali Daud, 2017. "Anomaly detection in heterogeneous bibliographic information networks using co-evolution pattern mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 149-175, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    2. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    3. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    4. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    5. Andrea Bonaccorsi & Filippo Chiarello & Gualtiero Fantoni, 2021. "Impact for whom? Mapping the users of public research with lexicon-based text mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1745-1774, February.
    6. Nieminen, Paavo & Pölönen, Ilkka & Sipola, Tuomo, 2013. "Research literature clustering using diffusion maps," Journal of Informetrics, Elsevier, vol. 7(4), pages 874-886.
    7. Juste Raimbault, 2019. "Exploration of an interdisciplinary scientific landscape," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 617-641, May.
    8. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.
    9. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    10. Xiaoguang Wang & Qikai Cheng & Wei Lu, 2014. "Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1253-1271, November.
    11. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    12. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    13. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    14. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    15. Yuxian Liu & Ewelina Biskup & Yueqian Wang & Fengfeng Cai & Xiaoyan Zhang, 2020. "A new territory and its pioneer: opening up a dominant research stream for a translational research area," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1213-1228, November.
    16. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    17. Rahman, A.I.M. Jakaria & Guns, Raf & Rousseau, Ronald & Engels, Tim C.E., 2015. "Is the expertise of evaluation panels congruent with the research interests of the research groups: A quantitative approach based on barycenters," Journal of Informetrics, Elsevier, vol. 9(4), pages 704-721.
    18. Wolfram, Dietmar & Zhao, Yuehua, 2014. "A comparison of journal similarity across six disciplines using citing discipline analysis," Journal of Informetrics, Elsevier, vol. 8(4), pages 840-853.
    19. Xiaozan Lyu & Ping Zhou & Loet Leydesdorff, 2020. "Eco-system mapping of techno-science linkages at the level of scholarly journals and fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2037-2055, September.
    20. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:10:y:2016:i:3:p:750-761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.