IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v47y2020i5p890-913.html
   My bibliography  Save this article

Bayesian model selection in linear mixed models for longitudinal data

Author

Listed:
  • Oludare Ariyo
  • Adrian Quintero
  • Johanna Muñoz
  • Geert Verbeke
  • Emmanuel Lesaffre

Abstract

Linear mixed models (LMMs) are popular to analyze repeated measurements with a Gaussian response. For longitudinal studies, the LMMs consist of a fixed part expressing the effect of covariates on the mean evolution in time and a random part expressing the variation of the individual curves around the mean curve. Selecting the appropriate fixed and random effect parts is an important modeling exercise. In a Bayesian framework, there is little agreement on the appropriate selection criteria. This paper compares the performance of the deviance information criterion (DIC), the pseudo-Bayes factor and the widely applicable information criterion (WAIC) in LMMs, with an extension to LMMs with skew-normal distributions. We focus on the comparison between the conditional criteria (given random effects) versus the marginal criteria (averaged over random effects). In spite of theoretical arguments, there is not much enthusiasm among applied statisticians to make use of the marginal criteria. We show in an extensive simulation study that the three marginal criteria are superior in choosing the appropriate longitudinal model. In addition, the marginal criteria selected most appropriate model for growth curves of Nigerian chicken. A self-written R function can be combined with standard Bayesian software packages to obtain the marginal selection criteria.

Suggested Citation

  • Oludare Ariyo & Adrian Quintero & Johanna Muñoz & Geert Verbeke & Emmanuel Lesaffre, 2020. "Bayesian model selection in linear mixed models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(5), pages 890-913, April.
  • Handle: RePEc:taf:japsta:v:47:y:2020:i:5:p:890-913
    DOI: 10.1080/02664763.2019.1657814
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2019.1657814
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2019.1657814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    2. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    3. Fatema Shafie Khorassani & Jeremy M. G. Taylor & Niko Kaciroti & Michael R. Elliott, 2023. "Incorporating Covariates into Measures of Surrogate Paradox Risk," Stats, MDPI, vol. 6(1), pages 1-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:47:y:2020:i:5:p:890-913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.