IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v82y2019i4d10.1007_s00184-018-0684-x.html
   My bibliography  Save this article

On testing the hidden heterogeneity in negative binomial regression models

Author

Listed:
  • Jeonghwan Kim

    (Inha University)

  • Woojoo Lee

    (Inha University)

Abstract

Negative binomial regression models have been widely used for analyzing overdispersed count data. However, when an important covariate is not included or individuals show some heterogeneity, negative binomial regression models may lead to erroneous standard errors or confidence intervals for the regression parameters. To test the existence of the hidden heterogeneity in negative binomial regression models, score statistics are developed under additive and multiplicative random effect models. We provide the explicit form of the score test statistics and their asymptotic distribution, and investigate the relationship between the score test statistics from the two random effect models. Our numerical study shows that the proposed score statistic has superior performance than existing methods in terms of controlling for the type I error and power.

Suggested Citation

  • Jeonghwan Kim & Woojoo Lee, 2019. "On testing the hidden heterogeneity in negative binomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 457-470, May.
  • Handle: RePEc:spr:metrik:v:82:y:2019:i:4:d:10.1007_s00184-018-0684-x
    DOI: 10.1007/s00184-018-0684-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0684-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0684-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. E. Breslow, 1984. "Extra‐Poisson Variation in Log‐Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 38-44, March.
    2. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, September.
    3. Chesher, Andrew D, 1984. "Testing for Neglected Heterogeneity," Econometrica, Econometric Society, vol. 52(4), pages 865-872, July.
    4. Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
    5. Geert Verbeke & Geert Molenberghs, 2003. "The Use of Score Tests for Inference on Variance Components," Biometrics, The International Biometric Society, vol. 59(2), pages 254-262, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Todem & Wei‐Wen Hsu & KyungMann Kim, 2023. "Nonparametric scanning tests of homogeneity for hierarchical models with continuous covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2063-2075, September.
    2. Nasim Vahabi & Anoshirvan Kazemnejad & Somnath Datta, 2018. "A Marginalized Overdispersed Location Scale Model for Clustered Ordinal Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 103-134, December.
    3. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    4. Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.
    5. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    6. I. R. C. Oliveira & G. Molenberghs & G. Verbeke & C. G. B. Demétrio & C. T. S. Dias, 2017. "Negative variance components for non-negative hierarchical data with correlation, over-, and/or underdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1047-1063, April.
    7. Yang, Zhao & Hardin, James W. & Addy, Cheryl L., 2010. "Score tests for overdispersion in zero-inflated Poisson mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1234-1246, May.
    8. Maria Iannario, 2015. "Detecting latent components in ordinal data with overdispersion by means of a mixture distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 977-987, May.
    9. Marc Henry & Ismael Mourifié, 2013. "Euclidean Revealed Preferences: Testing The Spatial Voting Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 650-666, June.
    10. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    11. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    12. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    13. Chenglong Ye & Lin Zhang & Mingxuan Han & Yanjia Yu & Bingxin Zhao & Yuhong Yang, 2022. "Combining Predictions of Auto Insurance Claims," Econometrics, MDPI, vol. 10(2), pages 1-15, April.
    14. Tony Vangeneugden & Geert Molenberghs & Geert Verbeke & Clarice G.B. Dem�trio, 2011. "Marginal correlation from an extended random-effects model for repeated and overdispersed counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 215-232, September.
    15. repec:ebl:ecbull:v:3:y:2008:i:5:p:1-7 is not listed on IDEAS
    16. Aivars Spilbergs & Andris Fomins & Māris Krastiņš, 2022. "Multivariate Modelling of Motor Third Party Liability Insurance Claims," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 8(1), pages 5-18.
    17. Jinghui Chen & Masahito Kobayashi & Michael McAleer, 2017. "Testing for volatility co-movement in bivariate stochastic volatility models," Documentos de Trabajo del ICAE 2017-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    18. Barros, Carlos Pestana & Ferreira, Candida & Williams, Jonathan, 2007. "Analysing the determinants of performance of best and worst European banks: A mixed logit approach," Journal of Banking & Finance, Elsevier, vol. 31(7), pages 2189-2203, July.
    19. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    20. Carlos Pestana Barros & Zhongfei Chen & Luis A. Gil-Alana, 2012. "Housing sales in urban Beijing," Applied Economics, Taylor & Francis Journals, vol. 44(34), pages 4495-4504, December.
    21. Davidson, Russell & MacKinnon, James G., 1989. "Testing for Consistency using Artificial Regressions," Econometric Theory, Cambridge University Press, vol. 5(3), pages 363-384, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:82:y:2019:i:4:d:10.1007_s00184-018-0684-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.