IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v83y2021i1d10.1007_s13571-020-00242-x.html
   My bibliography  Save this article

On Some Smooth Estimators of the Quantile Function for a Stationary Associated Process

Author

Listed:
  • Yogendra P. Chaubey

    (Concordia University)

  • Isha Dewan

    (Indian Statistical Institute, Delhi Centre)

  • Jun Li

    (Nanjing Audit University
    Hainan Normal University)

Abstract

Let {Xn, n ≥ 1} be a sequence of stationary non-negative associated random variables with common marginal distribution function F(x) and quantile function Q(u), where Q(u) is defined as F(Q(u)) = u. Here we consider the smooth estimation of Q(u), adapted from generalized kernel smoothing (Cheng and Parzen J. Stat. Plann. Infer. 59, 291–307, 1997) of the empirical quantile function. Some asymptotic properties of the kernel quantile estimator, for associated sequences, are also established parallel to those in the i.i.d. case. Various estimators in this class of estimators are contrasted, through a simulation study, among themselves and with an indirect smooth quantile estimator obtained by inverting the Poisson weights based estimator of the distribution function studied in Chaubey et al. (Statist. Probab. Lett. 81, 267–276, 2011). The indirect smoothing estimator seems to be the best estimator on account of smaller MSE, however, a quantile estimator based on the Bernstein polynomials and that using the corrected Poisson weights turn out to be almost as good as the inverse distribution function estimator using Poisson weights.

Suggested Citation

  • Yogendra P. Chaubey & Isha Dewan & Jun Li, 2021. "On Some Smooth Estimators of the Quantile Function for a Stationary Associated Process," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 114-139, May.
  • Handle: RePEc:spr:sankhb:v:83:y:2021:i:1:d:10.1007_s13571-020-00242-x
    DOI: 10.1007/s13571-020-00242-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-020-00242-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-020-00242-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahboubeh Akbari & Majid Rezaei & Sarah Jomhoori & Vahid Fakoor, 2019. "Nonparametric estimators for quantile density function under length-biased sampling," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(19), pages 4918-4935, October.
    2. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    3. M. Jones, 1992. "Estimating densities, quantiles, quantile densities and density quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(4), pages 721-727, December.
    4. Bagai, Isha & Prakasa Rao, B. L. S., 1991. "Estimation of the survival function for stationary associated processes," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 385-391, November.
    5. Balakrishnapillai Vineshkumar & Narayanan Unnikrishnan Nair, 2019. "Bivariate Quantile Functions and their Applications to Reliability Modelling," Statistica, Department of Statistics, University of Bologna, vol. 79(1), pages 3-21.
    6. Arthur Charpentier & Abder Oulidi, 2010. "Beta kernel quantile estimators of heavy-tailed loss distributions," Post-Print halshs-00425566, HAL.
    7. Lai Wei & Dongliang Wang & Alan D. Hutson, 2015. "An Investigation of Quantile Function Estimators Relative to Quantile Confidence Interval Coverage," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(10), pages 2107-2135, May.
    8. Chaubey, Yogendra P. & Dewan, Isha & Li, Jun, 2011. "Smooth estimation of survival and density functions for a stationary associated process using Poisson weights," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 267-276, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    3. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    5. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    6. Bouezmarni, Taoufik & Van Bellegem, Sébastien, 2009. "Nonparametric Beta Kernel Estimator for Long Memory Time Series," IDEI Working Papers 633, Institut d'Économie Industrielle (IDEI), Toulouse.
    7. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    8. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    9. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    10. P.G. Sankaran & N.N. Midhu, 2017. "Nonparametric estimation of mean residual quantile function under right censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1856-1874, July.
    11. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    12. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    13. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    14. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    15. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    16. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    17. Funke, Benedikt & Hirukawa, Masayuki, 2019. "Nonparametric estimation and testing on discontinuity of positive supported densities: a kernel truncation approach," Econometrics and Statistics, Elsevier, vol. 9(C), pages 156-170.
    18. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    19. Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
    20. J. Baixauli & Susana Alvarez, 2012. "Implied Severity Density Estimation: An Extended Semiparametric Method to Compute Credit Value at Risk," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 115-129, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:1:d:10.1007_s13571-020-00242-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.