IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/enzgs_v1.html
   My bibliography  Save this paper

The tenets of quantile-based inference in Bayesian models

Author

Listed:
  • Perepolkin, Dmytro
  • Goodrich, Benjamin
  • Sahlin, Ullrika

Abstract

Bayesian inference can be extended to probability distributions defined in terms of their inverse distribution function, i.e. their quantile function. This applies to both prior and likelihood. *Quantile-based likelihood* is useful in models with sampling distributions which lack an explicit probability density function. *Quantile-based prior* allows for flexible distributions to express expert knowledge. The principle of *quantile-based* Bayesian inference is demonstrated in the univariate setting with a Govindarajulu likelihood, as well as in a *parametric quantile regression*, where the error term is described by a quantile function of a Flattened Skew-Logistic distribution.

Suggested Citation

  • Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2021. "The tenets of quantile-based inference in Bayesian models," OSF Preprints enzgs_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:enzgs_v1
    DOI: 10.31219/osf.io/enzgs_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/613b44893d2d6a01e89fd92b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/enzgs_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Warren Gilchrist, 1997. "Modelling with quantile distribution functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 113-122.
    2. Asquith, William H., 2007. "L-moments and TL-moments of the generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4484-4496, May.
    3. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
    4. Saralees Nadarajah, 2009. "Bathtub-shaped failure rate functions," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 855-863, September.
    5. Agostino Tarsitano, 2010. "Comparing Estimation Methods for the FPLD," Journal of Probability and Statistics, Hindawi, vol. 2010, pages 1-16, June.
    6. Christopher C. Drovandi & Anthony N. Pettitt & Malcolm J. Faddy, 2011. "Approximate Bayesian computation using indirect inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(3), pages 317-337, May.
    7. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    8. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    9. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    10. Balakrishnapillai Vineshkumar & Narayanan Unnikrishnan Nair, 2019. "Bivariate Quantile Functions and their Applications to Reliability Modelling," Statistica, Department of Statistics, University of Bologna, vol. 79(1), pages 3-21.
    11. Jason C. Reinhardt & Xi Chen & Wenhao Liu & Petar Manchev & M. Elisabeth Paté‐Cornell, 2016. "Asteroid Risk Assessment: A Probabilistic Approach," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 244-261, February.
    12. Karvanen, Juha & Nuutinen, Arto, 2008. "Characterizing the generalized lambda distribution by L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1971-1983, January.
    13. Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
    14. Warren Gilchrist, 2008. "Regression Revisited," International Statistical Review, International Statistical Institute, vol. 76(3), pages 401-418, December.
    15. Su, Steve, 2007. "Numerical maximum log likelihood estimation for generalized lambda distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3983-3998, May.
    16. Jonah Gabry & Daniel Simpson & Aki Vehtari & Michael Betancourt & Andrew Gelman, 2019. "Visualization in Bayesian workflow," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 389-402, February.
    17. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    18. Fournier, B. & Rupin, N. & Bigerelle, M. & Najjar, D. & Iost, A. & Wilcox, R., 2007. "Estimating the parameters of a generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2813-2835, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perepolkin, Dmytro & Lindsröm, Erik & Sahlin, Ullrika, 2023. "Quantile-parameterized distributions for expert knowledge elicitation," OSF Preprints tq3an_v1, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2021. "The tenets of indirect inference in Bayesian models," OSF Preprints enzgs, Center for Open Science.
    3. Chalabi, Yohan / Y. & Scott, David J & Wuertz, Diethelm, 2012. "An asymmetry-steepness parameterization of the generalized lambda distribution," MPRA Paper 37814, University Library of Munich, Germany.
    4. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    5. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    6. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    7. Karvanen, Juha & Nuutinen, Arto, 2008. "Characterizing the generalized lambda distribution by L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1971-1983, January.
    8. Majid Ahmadabadi & Yaghub Farjami & Mohammad Bameni Moghadam, 2012. "A process control method based on five-parameter generalized lambda distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(4), pages 1097-1111, June.
    9. Perepolkin, Dmytro & Lindsröm, Erik & Sahlin, Ullrika, 2023. "Quantile-parameterized distributions for expert knowledge elicitation," OSF Preprints tq3an_v1, Center for Open Science.
    10. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
    11. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    12. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    13. Su, Steve, 2009. "Confidence intervals for quantiles using generalized lambda distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3324-3333, July.
    14. Perepolkin, Dmytro & Lindsröm, Erik & Sahlin, Ullrika, 2023. "Quantile-parameterized distributions for expert knowledge elicitation," OSF Preprints tq3an, Center for Open Science.
    15. Oh, Man-Suk & Park, Eun Sug & So, Beong-Soo, 2016. "Bayesian variable selection in binary quantile regression," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 177-181.
    16. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
    17. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    18. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:enzgs_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.