IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00425566.html
   My bibliography  Save this paper

Beta kernel quantile estimators of heavy-tailed loss distributions

Author

Listed:
  • Arthur Charpentier

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

  • Abder Oulidi

    (MAI - Mathématiques Appliquées et Informatique - UCO - Université Catholique de l'Ouest)

Abstract

In this paper we suggest several nonparametric quantile estimators based on Beta kernel. They are applied to transformed data by the generalized Champernowne distribution initially fitted to the data. A Monte Carlo based study has shown that those estimators improve the efficiency of the traditional ones, not only for light tailed distributions, but also for heavy tailed, when the probability level is close to 1. We also compare these estimators with the Extreme Value Theory Quantile applied to Danish data on large fire insurance losses.

Suggested Citation

  • Arthur Charpentier & Abder Oulidi, 2010. "Beta kernel quantile estimators of heavy-tailed loss distributions," Post-Print halshs-00425566, HAL.
  • Handle: RePEc:hal:journl:halshs-00425566
    DOI: 10.1007/s11222-009-9114-2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    3. Antoine J.‐P. Tixier & Matthew R. Hallowell & Balaji Rajagopalan, 2017. "Construction Safety Risk Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1917-1935, October.
    4. Rocco Roberto Cerchiara & Francesco Acri, 2020. "Estimating the Volatility of Non-Life Premium Risk Under Solvency II: Discussion of Danish Fire Insurance Data," Risks, MDPI, vol. 8(3), pages 1-19, July.
    5. Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
    6. Rocco Roberto Cerchiara & Francesco Acri, 2016. "Aggregate Loss Distribution And Dependence: Composite Models, Copula Functions And Fast Fourier Transform For The Danish Re Insurance Data," Working Papers 201608, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    7. Yogendra P. Chaubey & Isha Dewan & Jun Li, 2021. "On Some Smooth Estimators of the Quantile Function for a Stationary Associated Process," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 114-139, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00425566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.